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a b s t r a c t

We study the General Routing Problem defined on a mixed graph and with stochastic demands. The prob-
lem under investigation is aimed at finding the minimum cost set of routes to satisfy a set of clients
whose demand is not deterministically known. Since each vehicle has a limited capacity, the demand
uncertainty occurring at some clients affects the satisfaction of the capacity constraints, that, hence,
become stochastic. The contribution of this paper is twofold: firstly we present a chance-constrained
integer programming formulation of the problem for which a deterministic equivalent is derived. The
introduction of uncertainty into the problem poses severe computational challenges addressed by the
design of a branch-and-cut algorithm, for the exact solution of limited size instances, and of a heuristic
solution approach exploring promising parts of the search space. The effectiveness of the solution
approaches is shown on a probabilistically constrained version of the benchmark instances proposed
in the literature for the mixed capacitated general routing problem.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

An important operative issue in the context of the distributive
logistics consists in planning the delivery routes performed by a
fleet of vehicles to satisfy the requests of a set of elements of a net-
work, namely required vertices, edges and arcs. In mathematical
terms, the problem is modeled as Mixed Capacitated General Rout-
ing Problem (MCGRP): it basically consists in finding a set of routes
on a mixed graph, beginning and ending at the same vertex
(depot), with minimum total cost, satisfying demands located at
links and vertices and with a capacity restriction on the demand
satisfied by each route. The MCGRP generalizes many vehicle rout-
ing problems that have been widely studied in the last forty years
and for which hundreds of papers have been written, either to give
exact or heuristic procedures for their resolution or to provide
lower bounds. Despite the practical importance of the mixed gen-
eral routing problem, relatively few studies have been published
on it. Most works deal with the uncapacitated case. Corberán,
Letchford, and Sanchis (2001, 2003, 2005) studied the feasible
polyhedron starting from an integer programming formulation
solved through an efficient cutting-plane algorithm. Blais and
Laporte (2003) proposed a different approach based on the trans-
formation of the original problem into an equivalent Traveling

Salesman Problem or Rural Postman Problem which are solved in
turn through available exact algorithms.

With respect to the capacitated case, Bosco, Laganà, Musmanno,
and Vocaturo (2013) proposed a novel integer programming for-
mulation and a branch-and-cut algorithm (B&C) where surrogate
inequalities, introduced for the Capacitated Arc Routing Problem,
are extended to the MCGRP polyhedron.

The aim of this paper is the introduction of the uncertainty issue
in this latter and more involved case, where each vehicle has a lim-
ited capacity. In effect, most of the real-world applications mod-
eled as MCGRP are characterized by some uncertainty which
affects the customers’ demand. For example, the operational plan
of pickup routes in solid waste collection systems implies model-
ing the service by the means of required arcs or edges whenever
the collection points are distributed along the streets, while some
vertices are required if the collection is concentrated around spe-
cific points (e.g., hospitals, schools, and supermarkets). For gener-
ality, we shall also assume that the requests of random elements
might be correlated to faithfully represent real situations. For
example, in the garbage collection, the geographical nearness of
some customers within the same regional district or along the
same street suggests to consider a statistical correlation among
their garbage productions.

Following these considerations, we bring the stochasticity into
the MCGRP by adopting the paradigm of the probabilistic con-
straints defined within the general Stochastic Programming (SP)
framework (Birge & Louveaux, 1997). This modeling paradigm is
appropriate in many situations, where an operational plan is

http://dx.doi.org/10.1016/j.ejor.2014.07.023
0377-2217/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: beraldi@deis.unical.it (P. Beraldi), mebruni@deis.unical.it

(M.E. Bruni), demetrio.lagana@unical.it (D. Laganà), musmanno@unical.it
(R. Musmanno).

European Journal of Operational Research 240 (2015) 382–392

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.07.023&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2014.07.023
mailto:beraldi@deis.unical.it
mailto:mebruni@deis.unical.it
mailto:demetrio.lagana@unical.it
mailto:musmanno@unical.it
http://dx.doi.org/10.1016/j.ejor.2014.07.023
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


periodically updated over a long planning horizon, and hence,
becomes crucial to design a set of a priori routes that will cover
the uncertain requests with a high reliability level. In particular,
we formally introduce a stochastic formulation of the MCGRP
where the stochastic capacity constraints are re-formulated in
terms of probabilistic constraints. The explicit inclusion of the
uncertainty within an already proved NP-hard problem, poses
additional challenges, calling for the design of tailored solution
approaches. This represents the second core contribution of the
present paper. We develop a branch-and cut (B&C) algorithm for
solving small instances and we design a large neighborhood search
heuristic for the solution of instances of larger size where the B&C
algorithm is used, in turn, to perform an exact local search on a
portion of the overall feasible region.

To put our contribution in the right perspective, we should pre-
cise that the adoption of the SP framework to model routing prob-
lems under uncertainty is not completely new. For an extensive
survey, the readers are referred to Dror and Trudeau (1986) and
Gendreau, Laporte, and Seguin (1996).

Within this stream, most of the contributions rely on the two-
stage paradigm and different recourse policies have been proposed
in the literature. Bertsimas (1992) and Bertsimas and Simchi-Levi
(1994) focused their researches on simple recourse policies that
are separable by vehicle. A different policy has been presented by
Ak and Erera (2007), that proposed a two-vehicle sharing recourse
policy. During the last decades various heuristic and exact optimi-
zation approaches have been proposed and analyzed for construct-
ing a set of tours minimizing expected costs given this recourse
policy. Gendreau, Laporte, and Seguin (1995) proposed an exact
solution for an a priori optimization model based on an integer
L-shaped method. Laporte, Louveaux, and van Hamme (2002) pre-
sented an improved method where strong lower bounds at the root
node contribute significantly to speed up the solution times.
Gendreau, Laporte, and Seguin (1996) applied local search con-
cepts embedded into a tabu search scheme to solve the a priori
model presented in Gendreau et al. (1995). More recently,
Laporte, Musmanno, and Vocaturo (2010) studied the capacitated
arc-routing problem with stochastic demands in the context of gar-
bage collection and proposed an adaptive large neighborhood
search heuristic.

Scant attention has been devoted to the formulation of routing
problems with probabilistic constraints. Stewart and Golden
(1983) presented a model able to find minimum cost routes with
a threshold constraint on the probability of a route failure, whereas
Laporte, Louveaux, and Mercure (1989) proposed a chance-con-
strained model for location-routing problems. A chance con-
strained version of the vehicle routing problem, solved to
optimality by algorithms similar to those developed for the deter-
ministic case, has been presented in Dror, Laporte, and Louveaux
(1993).

Besides the stochastic programming approach, the robust opti-
mization framework has been adopted to deal with routing prob-
lems involving uncertain parameters where the probability
distributions are not known. Amongst the recent contributions,
we cite Sungur, Ordóñez, and Dessouky (2008), who analyze the
case of uncertain customer demands and travel times. The goal is
to determine vehicle routes which satisfy the capacity constraints
and the specified time windows if all the uncertain parameters
attain the worst case realizations simultaneously. The problem
can be simplified to a deterministic model, which is attractive from
a computational standpoint. Gounaris, Wiesemann, and Floudas
(2013) (see also the references therein) investigate the case of
capacitated vehicle routing problem. Robust optimization counter-
parts of several deterministic formulations of the problem are
derived and numerically compared. Robust rounded capacity
inequalities are developed, which can be separated efficiently for

two broad classes of demand supports. Finally, the authors analyze
the relation between the robust models and the chance con-
strained counterparts. Lee, Lee, and Park (2004) considered two
types of uncertainty sets for the possible realizations of travel
times and demands. The authors propose a column generation
algorithm which encapsulates the robustness in the pricing prob-
lem cast as a robust version of the shortest path with resource
constraints.

In this paper we study the Mixed Capacitated General Routing
Problem with Probabilistic Constraints MCGRPPC. In Section 2, we
introduce the problem and we provide a chance-constrained inte-
ger linear programming formulation for the MCGRPPC. In Section 3
we define the B&C algorithm for solving small instances of the
MCGRPPC. In Section 4 we present a tailored heuristic search to
solve larger MCGRPPC instances. In Section 5, we present the
results of our computational study. Finally, in Section 6, we give
our conclusions and discuss future perspectives in this area.

2. Problem description

The MCGRPPC is defined over a mixed graph G ¼ ðV ;A; EÞ, where
V ¼ f1; . . . ;ng represents the set of vertices, where vertex 1
represents the depot, and A ¼ fði; jÞ # V � Vg is the set of arcs,
whereas E ¼ fði; jÞ # V � V : i < jg is the set of edges.

In the following, we shall denote by L ¼ A [ E, the set of links
and we shall indicate by cij a non-negative cost coefficient associ-
ated with each link ði; jÞ. We assume that the service activity may
occur at some vertices VR # V , named required vertices, arcs
AR # A and/or edges ER # E, named required arcs and required
edges, respectively. Thus, LR ¼ AR [ ER denotes the set of required
links of G and all the required vertices and links will be referred
to as required elements and indicated by R.

For each subset S � V of vertices, or its complementary set
SðS ¼ V n SÞ, we define the following sets:

(a) dþðSÞ ¼ fði; jÞ 2 A : i 2 S ^ j 2 Sg,
(b) d�ðSÞ ¼ fði; jÞ 2 A : i 2 S ^ j 2 Sg,
(c) dþAR

ðSÞ ¼ fði; jÞ 2 AR : i 2 S ^ j 2 Sg,
(d) d�AR

ðSÞ ¼ fði; jÞ 2 AR : i 2 S ^ j 2 Sg,
(e) dðSÞ ¼ fði; jÞ 2 E : i 2 S ^ j 2 S; or i 2 S ^ j 2 Sg,
(f) dER ðSÞ ¼ fði; jÞ 2 ER : i 2 S ^ j 2 S; or i 2 S ^ j 2 Sg,
(g) dLðSÞ ¼ dþðSÞ [ d�ðSÞ [ dðSÞ,
(h) dLR ðSÞ ¼ dþAR

ðSÞ [ d�AR
ðSÞ [ dER ðSÞ,

(i) SR ¼ S \ VR,
(j) ARðSÞ ¼ fði; jÞ 2 AR : i 2 S ^ j 2 Sg,
(k) ERðSÞ ¼ fði; jÞ 2 ER : i 2 S ^ j 2 Sg,
(l) RðSÞ ¼ ARðSÞ [ ERðSÞ [ SR.

The previous notation remains valid as long as S is replaced by v,
and S by v , or V n fvg. We denote by GR the graph induced on G by
all the required links and vertices. Generally, this graph is non-con-
nected. The vertex sets corresponding to connected components of
GR are called R-sets. The subgraphs of G induced by the R-sets
define the so-called R-connected components of G. An isolated
required vertex represents itself an R-connected component of G.

In real settings, the service demand associated with all but a
subset of required elements is seldom, if ever, known at the time
routes have to be designed. Thus, with the aim of more realistically
modeling general routing problems, one should deal with the sto-
chastic nature of the input parameters. In the following, we shall
assume that the set of required elements is partitioned into two
subsets RC and RU to differentiate between elements with known
and uncertain demands, respectively. Following the stochastic pro-
gramming modeling framework, we shall assume that the uncer-
tain demands are represented in terms of random variables
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