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a b s t r a c t

We present a method to solve the free-boundary problem that arises in the pricing of classical American
options. Such free-boundary problems arise when one attempts to solve optimal-stopping problems set
in continuous time. American option pricing is one of the most popular optimal-stopping problems con-
sidered in literature. The method presented in this paper primarily shows how one can leverage on a one
factor approximation and the moving boundary approach to construct a solution mechanism. The result
is an algorithm that has superior runtimes-accuracy balance to other computational methods that are
available to solve the free-boundary problems. Exhaustive comparisons to other pricing methods are pro-
vided. We also discuss a variant of the proposed algorithm that allows for the computation of only one
option price rather than the entire price function, when the requirement is such.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents a fast and accurate method to price an
American put option written on one underlying asset. An American
put option is a contract written on an underlying asset and gives
the holder the right to sell the asset for a pre-specified price
(strike) on or before a pre-specified date (maturity). An American
call, on the other hand, provides the holder the right to buy the
underlying asset. Unlike European options where the holder can
exercise the option only on the maturity date, the possibility of
early exercise makes the pricing of American options a problem
in stochastic optimization. While a closed-form solution for the
price of European options is derived in the seminal Black and
Scholes (1973) paper, there exists no analogous result for American
options.

American option pricing belongs to a very common class of
problems called Optimal-stopping problems. The American option
pricing problem is very often used as the canonical optimal-stop-
ping problem to construct and demonstrate new computational
methods that can readily be adapted to other optimal-stopping
problems. McKean (1965) and Merton (1973) show that the price
of an American option satisfies a partial differential equation
(PDE) with boundary conditions governed by a boundary that is
not known a priori and needs to be computed as part of the solu-
tion itself. Such problems are called free-boundary problems. Due

to the lack of closed-form solutions for the price, researchers and
practitioners have had to rely on numerical and approximation
schemes to price these options. These methods fall broadly into
three categories, those which use numerical techniques, those
which use analytical approximations of the price, and those which
use Monte Carlo simulation.

Some of the first methods developed to tackle the problem of
pricing an American option use numerical techniques. Brennan
and Schwartz (1977) use a finite difference scheme to transform
the PDE into a system of linear equations. Solving this system
recursively provides the option price for all times and underlying
asset prices, or the price function. The Projected Successive Over-
relaxation (PSOR) technique proposed by Cryer (1971) has also
been used to price American options numerically. Dempster and
Hutton (1999) use a finite difference approximation and derive a
linear programming (LP) problem at each time step. Each of these
LP problems is solved using the simplex method. The authors con-
clude that the simplex method is roughly comparable to the PSOR
technique. A front-fixing method is proposed in Wu and Kwok
(1997) and Nielsen, Skavhaug, and Tveito (2002) to compute
option prices. The front-fixing method utilizes a change in vari-
ables to transform the free-boundary problem into a nonlinear
problem on a fixed domain. Nielsen et al. (2002) also propose a
penalty method to price American put options, where the
unknown boundary is removed by adding a penalty term, again
leading to a nonlinear problem posed on a fixed domain. More
recently, Muthuraman (2008) uses a moving boundary approach
to convert the free-boundary problem into a sequence of fixed-
boundary problems which are easier to solve and can be solved
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using standard PDE-solvers. Using a guess of the exercise policy
(the unknown boundary), one obtains a fixed-boundary problem.
The price function obtained by solving this problem is used to
update the exercise policy, and the process is repeated till conver-
gence. These methods compute the price function for a particular
option, after which the option price for a particular underlying
asset price at a particular time to expiration is read off from this
function. A variety of methods have been proposed to obtain
option prices for a single underlying asset price at a single time
to expiration. Cox, Ross, and Rubinstein (1979) develop the bino-
mial-tree method which is widely in use today. Variants include
the trinomial-tree method (Boyle (1986)). Some methods use the
integral representations of the optimal exercise boundary and
the price function developed independently in Carr, Jarrow, and
Myneni (1992), Jacka (1991) and Kim (1990) to price the option.
Broadie and Detemple (1996) derive upper and lower bounds for
the price of an option using capped call options and the integral
representation for call options. As the integral representation of
the price function is dependent on the unknown optimal exercise
boundary, these methods first have to determine the boundary
recursively, and then price the option. Huang, Subrahmanyam,
and Yu (1996) is an example of such a method. Others, such as
Omberg (1987) and Chesney (1989), use exponential approxima-
tions to represent the boundary, and price the option using these
boundaries, but with limited results. Ju (1998) considers a multi-
piece exponential formula to represent the boundary and obtains
a closed-form solution for the price of the option based on this rep-
resentation. Approximating the boundary, however, requires the
calculation of twelve parameters iteratively while pricing the
option involves the calculation of complex integrals.

The second category of methods use analytical approximations
to represent the price of an option. MacMillan (1986) and Barone-
Adesi and Whaley (1987) develop quadratic approximations for
the option price. These methods are not convergent, and have trou-
ble pricing long-maturity options accurately. To correct this prob-
lem, Ju and Zhong (1999) develop an approximation based on the
method proposed in Barone-Adesi and Whaley (1987). While this
improved method prices long-maturity options more accurately,
it is still not convergent. Geske and Johnson (1984) view an Amer-
ican option as a sequence of Bermudan options and propose an
approximation of the option price consisting of an infinite
sequence of cumulative normal functions. Bunch and Johnson
(1992) propose a modified two-point Geske–Johnson approach.
Carr and Faguet (1996) view put options as the limit to a sequence
of perpetual option values which are subject to default risk, and
use this view to derive approximations for the price of an option.
More recently, Zhu (2006) derives a semi-closed form solution
for the price of the option as a Taylor series expansion consisting
of infinite terms, but requiring thirty terms for an accurate option
price.

Monte Carlo simulation techniques have gained popularity as a
result of their ability to price options written on several underlying
assets considerably quicker than numerical methods. Boyle (1977)
first proposed the use of simulation in option pricing, with Tilley
(1993) developing the first computational scheme capable of
implementing simulation techniques. Broadie and Glasserman
(1997), Carriere (1996), Longstaff and Schwartz (2001), Tsitsiklis
and Van Roy (1999) and Ibáñez and Zapatero (2004) are other
examples of option pricing methods using Monte Carlo simulation.

1.1. Contributions

In this paper, we construct a numerical scheme that quickly
computes the price function for an American put option by deter-
mining an approximate optimal exercise boundary. As highlighted
by others, such as Ju (1998) and Glasserman (2004), an extremely

accurate estimate of the optimal exercise boundary is not neces-
sary to obtain accurate option prices. The method proposed here
is a variant of the moving boundary approach presented in
Muthuraman (2008). The key difference here is that by leveraging
on a one factor approximation, we are able to obtain an algorithm
that has significantly better runtime-error balance. Moreover, the
primary disadvantage of the moving boundary approach is that,
when the requirement is such, it cannot be readily modified to effi-
ciently compute only one option price without having to compute
the entire price function. The variant proposed herein, however,
while taking advantage of the efficiency of the moving approach,
does allow for adaptation into an efficient algorithm for computing
a single option price. In this paper, we will restrict our focus to only
American put options since pricing call options is conceptually the
same with identical equations (but for the boundary condition).
Furthermore, the price of a call option written on the same under-
lying asset can be calculated using put-call parity relations (see, for
e.g. McDonald & Schroder (1998)) once the price of the put option
is determined. Most existing methods just provide the price of the
option, with the optimal exercise boundary having to be calculated
as a post-processing step. Knowledge of the boundary allows an
investor to make optimal decisions without having to calculate
the theoretical option price each time a decision has to be made.
The investor has just to compare the current asset price with the
boundary value at that time in order to act optimally. A method
which provides both a price and the boundary quickly and effi-
ciently is thus highly beneficial and desirable.

The central idea in the paper is that when a parameterized
approximation to the boundary exists, one can use the methodol-
ogy proposed in the paper to create a very efficient pricing solu-
tion. Though we demonstrate this using the classical American
option pricing setting, the benefit of such an approach increases
significantly when dealing with multidimensional cases that arise
in the presence of stochastic interest rates or multiple assets. Of
course, one has to find a good parameterized approximation of
the boundary and also ensure convergence. However as demon-
strated here, even in the simplest one dimensional case the benefit
of such an approach is significant.

The structure of the paper is as follows. In Section 2, the prob-
lem of pricing an American put option is laid out theoretically. Sec-
tion 3 discusses in detail the numerical scheme highlighted above.
We provide a test case in Section 5 to further illustrate the mech-
anism behind the method, together with exhaustive numerical
results. In Section 6, we propose a modification of the method to
calculate the option price for a single underlying asset price and
time to expiration. Section 7 summarizes this work and provides
directions for future research in this area.

2. The American option pricing problem

As in the Black–Scholes setting, we assume a perfect market (no
transaction costs, market is complete and arbitrage-free) with

dXðtÞ ¼ ðr � dÞXðtÞdt þ rXðtÞdWðtÞ

representing the dynamics of the price process of the underlying
asset, where r > 0 represents the risk-free rate of interest, d P 0
represents the continuous dividend yield, r > 0 represents the vol-
atility of the underlying asset and WðtÞ is a standard one-dimen-
sional Brownian motion.

Though we would like to investigate the effect of non-zero div-
idends in the numerical section, especially because of the need to
compare against benchmark cases, the inclusion of dividends is
straightforward. Hence for notational simplicity, we ignore divi-
dends in the rest of the paper, though we will included cases with
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