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a b s t r a c t

In this research paper, we explored using the trust region method to solve the logit-based SUE problem.
We proposed a modified trust region Newton (MTRN) algorithm for this problem. When solving the trust
region SUE subproblem, we showed that applying the well-known Steihaug-Toint method is inappropri-
ate, since it may make the convergence rate of the major iteration very slow in the early stage of the
computation. To overcome this drawback, a modified Steihaug-Toint method was proposed. We proved
the convergence of our MTRN algorithm and showed its convergence rate is superlinear.

For the implication of our algorithm, we proposed an important principle on how to select the basic
route for each OD pair. We indicated that it is a crucial principle to accelerate the convergence rate of
the minor iteration (i.e. trust region subproblem-solving iteration). In this study, other implication issues
for the SUE problem are also considered, including the computation of the trial step and the strategy to
ensure strict feasibility iteration point. We compared the MTRN algorithm with the Gradient Projection
(GP) algorithm on the Sioux Falls network. Some results of numerical analysis are also reported.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

There has been considerable interest in recent years in stochas-
tic user equilibrium (SUE) problem for traffic assignment. In the
literature, SUE was proposed to relax the unrealistic assumption
behind the user equilibrium (UE) problem, which states that peo-
ple have perfect knowledge of network conditions. Daganzo and
Sheffi (1977) first defined SUE principle. They assume that people
have different perception errors when selecting routes, and at the
SUE equilibrium, no traveler believes he can improve his travel
time by unilaterally changing routes.

The most widely studied SUE models are the logit model and
the probit model. The logit model assumes that people’s perception
error follows a logistic distribution (Akamatsu, 1996; Bell, 1995;
Chen & Alfa, 1991; Dial, 1971; Fisk, 1980; Leurent, 1997). The
probit model assumes that people’s perception error has a normal
distribution (Daganzo & Sheffi, 1977; Sheffi & Powell, 1982).
Theoretically, each model have advantages and disadvantages.
Logit model has well-known weaknesses such as their inability
to take proper account of overlapping or correlated paths.
However, it has an advantage of analytical simplicity. Probit model
is more behaviorally appealing than logit model, but suffers the

disadvantage either of requiring Monte Carlo techniques or of com-
plete path enumeration. In the literature, the logit model has
enjoyed much greater attention than the probit model. It is widely
used not only for theoretical investigation (Ghatee & Hashemi,
2009; Guo, Yang, & Liu, 2010; Zhou, Chen, & Wong, 2009), but also
for practical implementation (Aros-Vera, Marianov, & Mitchell,
2012; García-Ródenas & Marín, 2009; Haase & Müller, 2014). In
this study, we will concentrate on the logit model.

Generally speaking, solution algorithms for the logit based SUE
problem can be divided into two classes: link-based algorithms
and path-based algorithms. Link-based algorithms do not need
explicit path enumeration. They only assume an implicit path
choice set, such as the use of all efficient paths (Dial, 2001;
Maher, 1998), or all cyclic and acyclic paths (Akamatsu, 1996;
Bell, 1995). On the other hand, path-based algorithms require
explicit choosing a subset of feasible paths prior to the assignment.
Therefore, a large variety of methods can be used to generate a
more realistic path choice set. For different types of path choice
set generation methods, we can refer to Azevedo, Santos Costa,
Silvestre Madera, and Vieira Martins (1993), Bekhor, Ben-Akiva,
and Ramming (2006), Ben-Akiva, Bergman, Daly, and
Ramaswamy (1984), Cascetta, Nuzzolo, Russo, and Vitetta (1996),
and De la Barra, Perez, and Anez (1993)

This paper concentrates on the path-based algorithms for the
logit SUE model. Bekhor and Toledo (2005) proposed using the
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Gradient Projection (GP) method (Bertsekas, 1999) to solve this
problem. In their study, the gradient of the objective function is
projected on a linear manifold of the equality constraints, with
the scaling matrix being diagonal elements of the Hessian. Note
that algorithm GP still retains a linear convergence rate, it could
be slow as it is approaching the optimal solution. Hence, we won-
der to know whether methods that enjoy superlinear convergence
rate (such as the Newton type method) can further improve the
computation efficiency. At first sight, this is obvious, since faster
convergence rate undoubtedly results in less computation time.
However, it is not the case. As we know, superlinear convergence
rate is a local property, only if the iteration point lies within a
neighborhood of the optimal solution can we obtain such rate of
convergence. But we do not know the optimal SUE solution a priori,
hence we cannot find an initial point that is near the solution
before finishing the computation. Practical routine for choosing
the initial point for the SUE problem is to obtain a logit type route
flow pattern using free-flow travel times. Therefore, when this ini-
tial point is far from the optimal solution, the computation time
may be high, and most of the computing time is consumed in the
early stages of the iteration, at which the iteration point is far from
the optimal solution.

As we know, trust region method is an important and efficient
method in non-linear optimization. In this study, we will propose
a modified trust region Newton (MTRN) algorithm to solve the
logit-based SUE problem. Logit-based SUE problem is in essence
a linear equality constraint optimization problem.We will first
use the variable reduction method to transform it into an uncon-
strained one, and then use the trust region Newton method to
solve it. However, when solving the trust region SUE subproblem,
the well-known Steihaug-Toint method may be sometimes inap-
propriate. The reason is that in the early stage of iteration, the trust
region radius should be adjusted so that the next iteration point
satisfies the non-negative constraint. Hence it is usually very small.
For small trust region radius, the Steihaug-Toint method usually
terminates at the first iteration, which makes the trial step it gen-
erates only along the Cauchy direction (i.e., the steepest descent
direction). Therefore, in the early iteration stage, sometimes the
Steihaug-Toint method may be very slow and should not be used.
Alternatively, a modified Steihaug-Toint method is proposed. This
method does not suffer from the disadvantage that Steihaug-Toint
method retains. It is a very efficient method for the SUE problem.

When applying the modified trust region Newton (MTRN) algo-
rithm to the SUE problem, several practical issues are studied in
our research, including the computation of the trial step, the strat-
egy to ensure strict feasibility iteration point, and the principle of
the choice of the basic route. These issues are very important to
generate a fast and robust solution algorithm for the SUE problem.

The rest of this paper is structured as follows: In Section 2, we
briefly outline trust region Steihaug-Toint (TRST) algorithm for the
linear equality constraint optimization problem. In Section 3, we
propose the modified trust region Newton algorithm (MTRN) for
logit-based SUE problem. In Section 4, the MTRN algorithm and
the GP algorithm are tested and compared on the Sioux Falls
network. In Section 4, we provide conclusions and suggestions
for future work.

2. A trust region Steihaug-Toint algorithm for the linear
equality constraint optimization problem

2.1. Trust region method for major iteration

Consider the problem in the form:

½P1� minimize f ðxÞ ð1Þ
subject to Ax ¼ b ð2Þ

where f is twice continuously differentiable, and A is an m � n
matrix of full row rank. We further assume for convenience that f
is strictly convex, which guarantees that there is a global minimizer
of [P1].

Let �x0 be any feasible point for [P1], and Z be an n � (n �m)
basis matrix for the null space of A. It is well known that any other
feasible point can be expressed as

x ¼ �x0 þ Zy ð3Þ

where y is an (n �m)-dimensional vector.
Therefore, [P1] is equivalent to the following unconstrained

problem:

½P2� minimize
y2Rn�m

/ðyÞ ¼ f ð�x0 þ ZyÞ ð4Þ

In this paper, we call f(x) the original objective function. Its
argument x is the original variable. Correspondingly, /(y) and its
argument y are called the reduced objective function and reduced
variable, respectively.

If g ,rf(x) and H ,r2f(x) are the gradient and the Hessian
matrix of f, we can define the reduced gradient and the reduced
Hessian matrix of f by the following expression:

~g , ~gðyÞ ¼ r/ðyÞ ¼ ZT f ðxÞ ð5ÞeH , eHðyÞ ¼ r2/ðyÞ ¼ ZTr2f ðxÞZ ð6Þ

By assumption, the objective function f(x) is strictly convex,
then its Hessian matrix H is positive definite. For any non-zero
vector y, (Zy)TH(Zy) > 0, implies yT(ZHZ)y > 0. Therefore, the
reduced Hessian matrix eH ¼ ZHZ is also positive definite. As a
result, we conclude that the reduced objective function /(y) is
strictly convex, and [P2] is also a convex optimization problem.

We now briefly describe the trust region Steihaug-Toint (TRST)
algorithm to solve [P2]. This algorithm consists of two phases. The
major iteration phase applies the trust region framework to [P2],
and creates a trust region subproblem. The minor iteration phase
uses the Steihaug-Toint method to solve the subproblem
approximately.

Let yk be the current iteration point, we first define a region
around yk:

Bk ¼ y 2 Rn�mjky� ykkk 6 Dk

� �
ð7Þ

where Dk is the trust region radius, and k � kk is an iteration depen-
dent norm.

Then we build a quadratic model that approximate the
objective function /(y) around yk, and choose a step to be the
approximate minimizer of the model within the trust-region. That
is, we seek a solution of the following trust region subproblem:

minimize
p2Rn�m

mkðpÞ ¼ /ðykÞ þ ~gT
k pþ 1

2
pT eHkp ð8Þ

subject to kpkMk
6 Dk ð9Þ

where

kpkMk
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT Mkp

p
ð10Þ

and Mk is a symmetric positive definite matrix that depend on
iteration number k.

Define the ratio

qk ¼
/ðykÞ � /ðyk þ pkÞ

mkð0Þ �mkðpkÞ
ð11Þ

In (11), the numerator is called the actual reduction, and the
denominator is called the predicted reduction. This ratio measures
the agreement between the actual reduction in / and the predicted
reduction in mk.
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