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Multiobjective shortest path problems are computationally harder than single objective ones. In partic-
ular, execution time is an important limiting factor in exact multiobjective search algorithms. This paper
explores the possibility of improving search performance in those cases where the interesting portion of
the Pareto front can be initially bounded. We introduce a new exact label-setting algorithm that returns
the subset of Pareto optimal paths that satisfy a set of lexicographic goals, or the subset that minimizes
deviation from goals if these cannot be fully satisfied. Formal proofs on the correctness of the algorithm
are provided. We also show that the algorithm always explores a subset of the labels explored by a full
Pareto search. The algorithm is evaluated over a set of problems with three objectives, showing a perfor-
mance improvement of up to several orders of magnitude as goals become more restrictive.
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1. Introduction

Goal programming is one of the most successful models of
Multicriteria Decision Theory (Chankong & Haimes, 1983).
Virtually hundreds of applications can be found in the literature
(Romero, 1991; Tamiz, Jones, & El-Darzi, 1995). This paper explores
the application of the goal-based decision paradigm to multicrite-
ria shortest path problems.

Multicriteria shortest path problems arise naturally in many
fields, such as robot surveillance (Delle Fave, Canu, locchi, Nardi,
& Ziparo, 2009), robot path planning (Fujimura, 1996), satellite
scheduling (Gabrel & Vanderpooten, 2002), and route planning in
different contexts (Delling & Wagner, 2009; Climaco, Craveirinha,
& Pascoal, 2003; Jozefowiez, Semet, & Talbi, 2008; Machuca &
Mandow, 2012). A number of shortest path algorithms have been
proposed to tackle different multicriteria decision models. The
work of Hansen (Hansen, 1979) presented a bi-objective extension
of Dijkstra’s label setting algorithm. Martins (Martins, 1984) pro-
posed a general multiobjective label setting algorithm. A recent
evaluation of several multiobjective shortest path algorithms can
be found in (Raith & Ehrgott, 2009).

The multiobjective shortest path problem is computationally
harder than the single objective one. The number of label
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expansions can grow exponentially with solution depth, even for
the two objective case (Hansen, 1979). With the assumption of
bounded integer costs and a fixed number of objectives the prob-
lem becomes tractable for polynomially sized graphs, but still
harder than single objective search (e.g. see (Mandow & Pérez de
la Cruz, 2009; Miiller-Hannemann & Weihe, 2006)).

Search efficiency can be improved in single destination (one to
one) problems using lower bound distance estimates in a similar
way as algorithm A* improves over Dijkstra’s (Pearl, 1984). Several
multiobjective extensions of A* have been proposed. These can be
grouped in two classes: those that perform node expansion as its
basic operation (like MOA* (Stewart & White, 1991)), and those
that perform label expansion (like Tung and Chew’s algorithm
(Tung & Chew, 1992) and NAMOA" (Mandow & Pérez de la Cruz,
2010)). The interest in these algorithms with lower bounds is
justified by the fact that: precise lower bound estimates can be
efficiently precalculated for a large class of problems (Tung &
Chew, 1992); and the use of such estimates still guarantees an
exact solution, i.e. the algorithms find the set of all Pareto optimal
solutions to the problem.

Several algorithms extended the node expansion policy of MOA*
to different contexts, like algorithms MOA** for search with non-
consistent lower bounds (Dasgupta, Chakrabarti, & DeSarkar,
1999), BCA* for compromise solutions (Galand & Perny, 2006), or
METAL-A* for goal based preferences (Mandow & Pérez de la
Cruz, 2001). The latter are the subject of this work. However,
recent empirical and formal analyses (Machuca, Mandow, Pérez
de la Cruz, & Ruiz-Sepulveda, 2012; Pérez de la Cruz, Mandow, &
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Machuca, 2013) have shown that lower bounded search with node
expansion can perform much worse than blind search algorithms
and, more precisely, that performance can seriously degrade with
better lower bound estimates. In practice, this result ruins the
primary purpose of using lower bounds in these algorithms in
the first place.

On the other hand, label expansion algorithms with lower
bounds have successfully improved performance over blind search
algorithms. The efficiency of NAMOA™ has been formally shown to
improve with better informed lower bound estimates and, in fact,
it has been shown to optimally exploit such estimates among the
class of admissible algorithms (Mandow & Pérez de la Cruz,
2010). Empirical results confirm that NAMOA" performs consis-
tently better than blind search, and that better informed lower
bounds result in faster search with less space requirements
(Machuca et al., 2012). Experiments on problems like bicriteria
route planning reveal that time, rather than space, is the practical
limiting factor in the calculation of the full Pareto set of solutions
(Machuca & Mandow, 2012; Machuca, Mandow, & Pérez de la
Cruz, 2009). Recent attempts to improve this algorithm include
parallel search (Sanders & Mandow, 2013) and the use of specific
efficient data structures (Mali, Michail, & Zaroliagis, 2012).

Many problems do not require in practice the calculation of the
full Pareto optimal set of solutions. In this work we investigate the
possibility of further improvements over the efficiency of NAMOA"
through the introduction of lexicographic goal based preferences. A
set of goals can be proposed to bound the area of interesting solu-
tions. More precisely, given a set of goals, we tackle the problem of
finding the subset of Pareto optimal paths that satisfy the goals or,
if these cannot be satisfied, finding the subset of Pareto optimal
paths that minimize deviation from the goals. We propose a new
multicriteria label-setting algorithm with lower bounds and label
expansion that finds such goal-optimal solutions. The new
algorithm explores a subset of the labels explored by NAMOA®,
achieving important performance improvements.

Section 2 reviews relevant concepts from multicriteria decision
theory and introduces the concept of pruning preference. Section 3
describes the algorithm. Important properties concerning admissi-
bility and efficiency are presented in Section 4. An empirical eval-
uation is described and discussed in Section 5. Finally some
conclusions and future work are outlined.

2. Preliminaries
2.1. Lexicographic goal preferences

First of all, we review the concepts of attribute, objective, and
goal, as defined in Romero (1991). Let X be the set of solutions to
a decision problem. An attribute is a measurable property
g(x) : X — R. An objective represents the desired improvement of
an attribute, i.e. maximization or minimization. A goal combines
an attribute with a specific target value, or aspiration level t € R,
stated by the decision maker to define his/her preference. Goals
for multiobjective shortest path problems are always of the form
g(x) < t. Goals are not constraints, i.e. feasible solutions may not
satisfy all goals.

Let us consider a set of g attributes g; : X — R, 1 < i < q grouped
in | priority levels sorted in order of decreasing preemptive
importance. Each priority level k comprises a set I, of one or more
attributes. Goals are defined by setting targets t; for each attribute,
g(x) < ti.

A solution to a goal problem is satisfactory when all the goals
can be satisfied. We seek nondominated satisfactory solutions. If
there are no satisfactory solutions to a problem, we seek nondom-
inated solutions that minimize deviation from the targets. In

lexicographic goal problems, the deviation of a set of goals is mea-
sured separately for each priority level. Minimizing the deviation
of goals at level k is infinitely more important than minimizing
deviation at level k + 1.

Several methods have been proposed to measure the deviation
from a set of goals. In this work, the minimization of the weighted
sum of deviations is employed. Let & = (g;,8>,.-.,8,) be a vector
with all attributes (costs) of a given solution x € X. We can calcu-
late a deviation vector for g with one component for each priority
level, d(g) = (d1(8),d>(8), . ..,di(&)). For each level k, its deviation
dy can be defined as:

de(8) = Y _wi x max(0,g; — ;) (1)

iely

where w; is the relative weight of goal i in level k.

We define the optimum achievement vector d” = (d;,d;, ..., d;)
as the minimum lexicographic deviation vector among all solu-
tions. Thus, the set of goal-optimal solutions consists of all non-
dominated feasible solutions with a deviation equal to d". If there
is a satisfactory solution, then the optimum achievement vector
is equal to 0.

2.2. Formal definitions

We will now reproduce some standard definitions and intro-
duce some new preference relations between cost vectors
V.y e R

e Dominance (<) or Pareto-optimal preference is defined as
follows,

J<y <= Vi y,<Yinj=Yy 2)

Dominance is a strict partial order. Given a set of vectors X, we shall
define M/ (X) the set of nondominated vectors in set X in the follow-
ing way,

NX)y={XeX|jeX j=<Xx} (3)

We shall find it useful to denote by =< the relation “dominates or
equals”.

e Let us denote o; = MiNgex) {Xi}, and f; = Maxzepx) {Xi}. The set
N (X) is bounded by the ideal point d = (o5 ... o), and the nadir
point f = (B . .. B,)- The ideal point can be calculated optimizing
each objective separately. However, for g > 2 it is difficult to
calculate the nadir point without computing the whole set of
nondominated solutions.

e Lexicographic order <, is defined as follows,

J=y = 3y <y AVi<j y =y (4)

The lexicographic order is a strict total order. The lexicographic
optimum of a set of vectors is trivially a nondominated vector.
o We define lexicographic goal preferences (<) as a partial order
relation,

Y=y < dF) < dy) v dE) =dy) A §=<y) (5)

It is easy to see that < is a strict partial order (it is irreflexive and
transitive). Given a set of vectors X, we shall define O¢(X) the set of
optimal vectors in X according to lexicographic goal preferences (i.e.
goal-optimal vectors) as,

Oc(X) ={XeX|AyeX Y=ci} (6)

Notice that an optimal solution according to < is also a nondomi-
nated solution, i.e. Og(X) C N (X).
e Let us consider a goal y, < t, the slack variable s for this goal is
defined as
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