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a b s t r a c t

Motivated by an application to school funding, we introduce the notion of a robust decomposable Markov
decision process (MDP). A robust decomposable MDP model applies to situations where several MDPs,
with the transition probabilities in each only known through an uncertainty set, are coupled together
by joint resource constraints. Robust decomposable MDPs are different than both decomposable MDPs,
and robust MDPs and cannot be solved by a direct application of the solution methods from either of
those areas. In fact, to the best of our knowledge, there is no known method to tractably compute optimal
policies in robust, decomposable MDPs. We show how to tractably compute good policies for this model,
and apply the derived method to a stylized school funding example.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Allocation of school funding is critical to improving school per-
formance. Unfortunately, there is no consensus on how this limited
resource should be allocated. As such, the allocation of school
funding is a recurring topic of political discussion (Shutt, 1979;
Fensterwald, 2013; Blume, 2013; Garber, 1997). For example, the
state of California passed an initiative in 2012 to raise taxes
specifically to fund schools. In 2013, a major debate was how to
allocate this schools funding: should it be allocated by population
or should poorer schools receive more funding?

Motivated by allocating funding to school, in this paper we
propose a new method of allocating finite resources, based on
control theory. Our method extends previous work on using
Markov decision processes (MDPs) for budget allocation. The main
contributions of this paper are (1) to introduce the concept of
robust, decomposable MDPs, (2) to propose a computationally
tractable method of computing good policies in such MDPs and
(3) to illustrate, through a stylized example, that funding allocation
based on these MDPs outperforms strategies inspired by a current
real-world school funding policy, No Child Left Behind.

For a school district composed of multiple schools, we would
like to find a funding allocation policy that maximizes the total

discounted expected reward over a finite planning horizon. Each
school can be in one of a finite number of performance states—
bad, good, excellent, etc.—and transitions between those states
based on funding allocated by the school district. Given an alloca-
tion of funding, each school transitions independently between its
performance states. The school district, does not know the exact
transition probabilities for each school, but instead knows an
uncertainty set within which the transition probabilities reside.
Further, the school district has a finite budget to distribute
between the schools. The funding allocation problem of the school
district can be modeled as a large MDP, where a state is a vector of
performance states for the individual schools; and the action set
corresponds to a funding allocation. The school district’s funding
allocation choice couples the transitions of the individual schools.
We model and compute good funding allocation policies by
decomposing the large school district MDP into smaller MDPs
through a novel Lagrangian relaxation. Because both the transi-
tions are only known through uncertainty sets in both the large
and small MDPs, we call the resulting model a robust, decompos-
able MDP.

Because our model is motivated by school funding, for com-
pleteness, in Appendix E we discuss the existing literature on
school funding and improving school performance. In Section 2
we motivate the robust, decomposable MDP model in words.
Related control theory work is discussed in Section 3. Sections 4
and 5 mathematically present the model and show how it can
tractably produce a funding policy. In Section 6 we compare the
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funding policy generated from our model to a stylized version of an
existing policy, namely No Child Left Behind. We conclude the
paper with some discussion in Section 7.

2. The model

In this paper, we use a robust, decomposable, finite horizon
MDP to compute funding distribution policies for a school district.
While the tools derived are generally applicable to robust, decom-
posable, finite horizon MDPs, they are motivated by an application
to school district funding. In this section, we begin with an English
language description of the basic problem and motivation for the
model we develop.

Consider a school district composed of a set of schools. While we
use this phrasing, school district could be interpreted in a state-
level sense, as a group of smaller districts. In either case, we are
concerned with a large institution—which we call the school dis-
trict—composed of smaller institutions—which we call the schools.

Each school has a proficiency level, which, in practice, is deter-
mined annually by the school’s students’ performance on a stan-
dardized exam. The school district wants to maximize the
proficiency of its schools. The main tool the school district has to
improve the proficiency of its schools is distributing a limited
amount of funding amongst the schools. In this model we assume
all schools have a base operating cost that they receive regardless
of their performance, and thus we normalize that cost to zero. The
funding allocated by our model is any additional funding a school
receives to help improve its performance. Of course, not all schools
are the same. Schools have varying numbers of students, and vary-
ing capabilities to effectively use allocated funding. The school dis-
trict makes an annual decision on how to allocate its limited
funding amongst the individual schools. Realistically, the school
district can only make a funding allocation plan for a decade or
so in the future.

Each school transitions into a state of higher or lower profi-
ciency randomly, but the transition probabilities are based on the
funding the school receives from the district. Unfortunately, it is
impossible for the school district to know these transition proba-
bilities—which depend on the school in question, its current profi-
ciency state, and its level of funding. Even historical data on the
school’s transitions would not help identify specific transition
probabilities, since the situation at an individual school changes
quickly, as compared to the annual funding decision cycle. Instead,
the school district only has an uncertainty set—a range of possible
transition probabilities—for the school.

We formalize the school district’s funding allocation problem
into a mathematical model as follows. Each individual school can
be modeled as an MDP, where the states describe the school’s pro-
ficiency, the actions describe the school’s funding level, and the
rewards describe the benefit the school district receives from the
school’s proficiency level. The rewards for each school capture
the school’s importance to the district, which could, for example,
be proportional to the number of students in the school. The exact
transition probabilities for each school’s MDP are not known, but
instead for each state action pair, we know an uncertainty set
describing a set of possible transition probabilities. We term an
individual school’s MDP as a little MDP.

The school district’s funding allocation problem is also an MDP.
The school district’s MDP has states that are the cross product of
the states of the individual schools. The individual schools MDPs
are coupled by the joint funding allocation decision. The only
actions available to the school district are those that satisfy the dis-
trict’s common budget. But, given a distribution of the common
funding, the transitions at each of the schools are independent.
The school district has a finite horizon, about a decade, for which

to plan funding allocation decisions. We term the school district’s
MDP as the big MDP.

The proposed method answers the basic question: How should
the school district distribute its limited funding to maximize the dis-
counted total proficiency of its schools over its planning horizon?
We model this decision using a robust, decomposable, finite hori-
zon MDP. The term robust comes from the fact that the transition
probabilities for each school are not known, but are only known
through uncertainty sets. The term decomposable comes from
the fact that the big MDP is made of a cross product of little MDPs,
coupled only by the limited funding to take actions across them.
The term finite horizon comes from the approximately decade long
planning period for the district. We formalize the robust,
decomposable, finite horizon MDP with mathematical notation in
Section 4. In the next section, we discuss some related control
theory work.

3. Related work

Markov decision processes have provided a powerful modeling
tool in solving problems related to planning and decision-making
under uncertainty, see (Puterman, 2005). For example recent appli-
cations of MDPs include: credit card profitability (So & Thomas,
2011), transshipment between warehouses (Seidscher & Minner,
2013), infectious disease spread (Yaesoubi & Cohen, 2011), air-
cargo revenue management (Han, Tang, & Huang, 2010), etc. How-
ever, often in practice an MDP model ends up with very large state
and action spaces. The computational difficulties in analyzing
MDPs with high dimensionality stimulated research on developing
techniques to deal with this problem. Typical approaches to
address high dimensionality in MDPs are: function approximation,
reachability considerations and aggregation techniques (Meuleau
et al., 1998; Powell, 2007).

Nilim and Ghaoui (2005) study the sensitivity of the optimal
solutions to Markov decision problems with respect to the state
transition probabilities. Typically, in practice, the MDP transition
probabilities are unknown and the errors in their estimations often
impose limitations in using MDPs as a modeling tool. The authors
consider a finite-state, finite-action MDP, and model the uncer-
tainty in the transition matrices by using uncertainty sets. They
successfully use a modification of the classical dynamic program-
ming algorithm to solve this robust MDP problem.

Adelman and Mersereau (2008) focus on stochastic dynamic
programming problems that are suitable for relaxation via decom-
position. The problems they consider consist of a number of sub-
problems that are independent of each other except for a set of
coupling constraints on the action space. They use Lagrangian
relaxation and linear programming to approximate the dynamic
programming formulation of the problem and provide compari-
sons between the two relaxations and the optimal solution. Also,
they conclude with a useful discussion on how to select the appro-
priate relaxation.

The model we develop, while it has pieces from both Adelman
and Mersereau and Nilim and El Ghaoui, is novel. Specifically, solu-
tion methods for our model do not follow directly from either
paper. This is demonstrated by the fact that the big MDP is not
solvable by standard MDP methods, even using an exponentially
sized state space, as the corresponding big MDP of Adelman and
Mersereau. Moreover, it cannot be solved by the methods of Nilim
and El Ghaoui, because the uncertainty sets we address have fun-
damentally different structure than their robust MDPs. We provide
additional discussion on this in Appendix B.

Sisikoglu, Epelman, and Smith (2011) develop a learning
algorithm for solving a discounted homogeneous MDP with
unknown transition probabilities. These transition probabilities
are learned either through simulation or direct observation of the
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