
Innovative Applications of O.R.

A branch and bound based heuristic for makespan minimization
of washing operations in hospital sterilization services

Onur Ozturk, Mehmet A. Begen ⇑, Gregory S. Zaric
Ivey Business School, Western University, 1255 Western Road, London, Ontario N6G 0N1, Canada

a r t i c l e i n f o

Article history:
Received 12 June 2013
Accepted 7 May 2014
Available online 24 May 2014

Keywords:
OR in health services
Parallel batch scheduling
Makespan
Branch and bound heuristic

a b s t r a c t

In this paper, we address the problem of parallel batching of jobs on identical machines to minimize
makespan. The problem is motivated from the washing step of hospital sterilization services where jobs
have different sizes, different release dates and equal processing times. Machines can process more than
one job at the same time as long as the total size of jobs in a batch does not exceed the machine capacity.
We present a branch and bound based heuristic method and compare it to a linear model and two other
heuristics from the literature. Computational experiments show that our method can find high quality
solutions within short computation time.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Sterilization services are hospital departments where medical
devices (MDs) are sterilized. There are two types of MDs: single
use MDs and reusable MDs. Reusable MDs (RMDs) are used in sur-
geries, sterilized, and then reused in other surgeries. We consider
the sterilization process of RMDs in this study.

All RMDs used in a surgery constitute the RMD set of the
surgery. After a surgery, all RMDs used are sent to the sterilization
service. Due to surgery characteristics and surgeons needs, RMD
sets may contain different numbers and types of instruments.
Hence, they may have different sizes (or volumes). Moreover, they
are sent to the sterilization service at different times within a day
since each surgery may have a different starting and ending time.

A typical sterilization service is composed of the following steps
(Di Mascolo & Gouin, 2013): pre-disinfection, washing, packing
and sterilization. Pre-disinfection is a manual step during which
RMDs are submerged in a chemical substance. Then, they are
washed in an automatic washer. Afterwards, they are packed and
sterilized with steam in autoclaves.

We are interested in the washing step which is a bottleneck for
sterilization services. More than one RMD set can be washed in an
automatic washer at the same as long as the machine capacity is
not exceeded. All RMD sets washed at the same time constitute a
single batch. Depending on the organization between operating
theatres and the sterilization service, RMD arrivals can be known

in advance. For instance, RMD arrivals can be known accurately
for operating theatres where ambulatory surgeries take place.
Another example is sterilization services that accept RMD arrivals
only at specific times within a day. However, although RMD arrival
times and sizes are known in advance, the decision of how to load
the machines, i.e., how to batch RMD sets and launch washing
cycles is not trivial. We model this problem using a parallel batch
scheduling approach. Jobs may have different sizes (or volumes),
different release dates and equal processing times. All jobs
processed at the same time constitute a single batch which is pro-
cessed on a single machine. The processing time of batches are the
same and equal to the processing time of jobs. Hence, our problem
becomes a parallel batching problem where RMD sets are treated
as jobs having different sizes, different release dates and equal
processing times.

The remainder of this paper is organized as follows. In Section 2,
we provide a literature review about batch scheduling problems
and summarize the contributions of this paper. In Section 3, we
give a formal description of our problem. Section 4 is dedicated
to the solution methodology. Section 5 presents computational
tests. Finally, we conclude the study and propose some further
research directions.

2. Literature review

2.1. Batch scheduling

We review only batch scheduling literature regarding jobs with
different sizes. For more information about batch scheduling, we

http://dx.doi.org/10.1016/j.ejor.2014.05.014
0377-2217/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +1 519 661 4146.
E-mail addresses: oozturk@uwo.ca (O. Ozturk), mbegen@ivey.uwo.ca (M.A. Begen),

gzaric@ivey.uwo.ca (G.S. Zaric).

European Journal of Operational Research 239 (2014) 214–226

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.05.014&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2014.05.014
mailto:oozturk@uwo.ca
mailto:mbegen@ivey.uwo.ca
mailto:gzaric@ivey.uwo.ca
http://dx.doi.org/10.1016/j.ejor.2014.05.014
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


refer the reader to Potts and Kovalyov (2000) and Mathirajan and
Sivakumar (2006). There are two types of batch scheduling: serial
and parallel. In serial batch scheduling, jobs in the same batch are
processed sequentially on one or more machines. The processing of
a batch is completed when the last job of the batch is processed. A
typical example is confection workshops where many types of
clothes are sewed. For instance, sewing of t-shirts constitutes a
batch while shirts, trousers, etc. may constitute a second batch.
In parallel batching however, all jobs are processed simultaneously
in the same machine. In this paper, we study a parallel batch
scheduling problem.

2.1.1. Exact methods
To the best of our knowledge, exact methods for parallel batch-

ing with jobs having different processing times are only applied to
the case when all jobs are available at the same time. Uzsoy (1994)
proposes a branch and bound algorithm to minimize the sum of job
completion times on a single machine in which jobs have different
processing times and sizes. For the same problem but with the
objective of minimizing makespan, Dupont and Dhaenens-Flipo
(2002) develop a branch and bound algorithm. Later on, Parsa,
Karimi, and Kashan (2010) propose a branch and price method
for the same problem. They report that their method is more effi-
cient in terms of solution time than the one proposed by Dupont
and Dhaenens-Flipo (2002). Malapert, Gueret, and Rousseau
(2012) study the minimization of maximum lateness on a single
machine for which they propose a constraint programming
approach. Other than these studies, there are many other studies
where the case of unit size jobs is tackled. For instance, Yuan,
Liu, Ng, and Cheng (2004) study the case where jobs have unit sizes
but different processing times and release dates in the presence of
job families. They provide dynamic programming algorithms when
the number of jobs, number of job families and number of
release dates are bounded. For the general case, they propose a
2-approximation algorithm. Cheng, Yuan, and Yang (2005) propose
polynomial time dynamic programming algorithms for a set of reg-
ular objective functions when jobs have unit sizes, unit processing
times, release dates and precedence constraints in the presence of
a single machine.

Regardless of processing times, all problems considering differ-
ent job sizes are in the class of NP-hard. The additional difficulty in
our problem is due to different release dates.

2.1.2. Heuristic and approximation methods
Most studies on batch scheduling with different job sizes focus

on heuristic, meta-heuristic methods and approximation algo-
rithms. Zhang, Cai, Lee, and Wong (2001) consider the case where
jobs are available at the same time while having different sizes and
processing times. They develop an approximation algorithm with a
worst case performance ratio equal to 7/4 for makespan minimiza-
tion on a single machine. Cheng, Yang, Hu, and Chen (2012) pro-
pose an approximation algorithm with a worst case ratio of 2
and (8/3 � 2/3*m) for makespan and total completion time criteria,
respectively, in the presence of m identical machines. Li, Li, Wang,
and Liu (2005) extend the problem studied in Zhang et al. (2001)
by considering job release dates. They present a 2+� approximation
algorithm which is derived from a polynomial time approximation
scheme that they propose for the case where jobs have unit sizes.
Lu, Feng, and Li (2010) use a similar approach and provide a 2+�
approximation algorithm for bi-objective minimization of make-
span and penalization of unscheduled jobs. Liu, Ng, and Cheng
(2014) present heuristics and approximation algorithms for make-
span minimization in the presence of unit size jobs with release
dates and different processing times. Their work is later general-
ized to the case of different job sizes by Li (2012). Chou (2007)
studies the same problem as in Li et al. (2005) and proposes a

genetic algorithm using a dynamic programming procedure to find
the makespan of a given chromosome.

Because in our problem we have release dates, different job
sizes and parallel machines, the articles cited in this paragraph
are more related to our problem. Li (2012) presents the only
approximation algorithm with a worst case performance ratio
equal to 2+� when jobs have different sizes, different processing
times, release dates. There are, however, mostly heuristic/meta-
heuristic methods in the literature for the batch scheduling prob-
lem studied by Li (2012). For the same problem, Chung, Tai, and
Pearn (2009) propose a mixed integer linear programming model
(MILP) and heuristics. Many other authors use the heuristics of
Chung et al. (2009) for benchmarking. Wang and Chou (2010),
Damodaran and Velez Gallego (2010) and Damodaran, Velez-
Gallego, and Maya (2011) consider the same problem for which
they develop a genetic algorithm, a greedy randomized adaptive
search procedure (GRASP) meta-heuristic and a constructive heu-
ristic, respectively. All report that their approaches outperform
the heuristics proposed in Chung et al. (2009). In another work,
Damodaran and Velez-Gallego (2012) propose a simulated anneal-
ing algorithm which is able compete with the GRASP approach.
Ozturk, Espinouse, Di Mascolo, and Gouin (2012) develop a MILP
model that runs faster than that proposed by Chung et al. (2009)
for the case with equal job processing times. They also treat some
special cases and provide optimal greedy algorithms. Recently,
Pearn, Hong, and Tai (2013) enlarge the broad of the problem con-
sidering job families, due dates and set-up times between the pro-
cessing of batches from different families.

2.2. Contribution of this paper

The method we propose exploits the structural properties of the
problem under study. It is based on constructing a search tree
where each node represents a job release date or the starting time
of batch processing thanks to equal job processing time property.
Numerical tests show that our branch bound based heuristic
method (B&BH) can solve problem instances containing up to 40
jobs in short computational time and can solve larger instances
in reasonable time. MILP model of Ozturk et al. (2012) can find
the optimal solution for small and medium size instances but it
requires too much computational time. Regarding other methods
from the literature, benchmarking results show that our method’s
solution quality is higher than two other heuristics from the liter-
ature. Our method is applicable in sterilization services since it can
quickly solve real size instances.

3. Problem description, notation and complexity

We begin with definitions and notation:

� There are m identical parallel machines with a limited capacity
B.
� There are n jobs to be processed. A job is a task that is charac-

terized by a release date, rj, a size, wj, and a processing time, p.
� The size of a job cannot be greater than the machine capacity.
� Since washing times are the same for all RMD sets, job process-

ing times are the same for all jobs.
� A batch is composed of jobs processed at the same time on the

same machine. Several jobs can be batched together, complying
with the machine capacity constraint.
� Once the processing of a batch is started, it cannot be inter-

rupted (i.e. pre-emption is not allowed). Jobs cannot be split
into multiple batches.
� The objective is to minimize makespan.

O. Ozturk et al. / European Journal of Operational Research 239 (2014) 214–226 215



Download English Version:

https://daneshyari.com/en/article/479801

Download Persian Version:

https://daneshyari.com/article/479801

Daneshyari.com

https://daneshyari.com/en/article/479801
https://daneshyari.com/article/479801
https://daneshyari.com

