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a b s t r a c t

This article studies the influence of risk on farms’ technical efficiency levels. The analysis extends the
order-m efficiency scores approach proposed by Daraio and Simar (2005) to the state-contingent frame-
work. The empirical application focuses on cross section data of Catalan specialized crop farms from the
year 2011. Results suggest that accounting for production risks increases the technical performance. A
10% increase in output risk will result in a 2.5% increase in average firm technical performance.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental challenge to modeling production is the design
of an appropriate conceptualization of the stochastic environment
in which production decisions take place. As noted in the Chavas,
Chambers, & Pope, 2010 literature review of the production eco-
nomics literature over the past century, production uncertainty
modeling started with Day (1965) and Fuller (1965) through the
use of experimental data on corn yield response to fertilizer appli-
cation. This literature then evolved to the introduction of stochas-
tic production functions that have allowed for production
uncertainty mainly through additive and multiplicative structures.
Recognition of the drawbacks of multiplicative and additive speci-
fications, led Just and Pope (1978) to introduce a mean–variance
model that characterizes inputs as risk increasing, neutral or
decreasing, by evaluating changes in output variability as a
response to input changes. Other papers based on the mean–
variance or on higher order approaches, the latter allowing to
study the impact of input changes on higher order moments,
include Yassour, Zilberman, and Rausser (1981), Antle (1983), or
Nelson and Preckel (1991).

More recently, Kumbhakar (2002) and Wang (2002) have
allowed for production uncertainty in efficiency measurement.

Inadequate characterization of the stochastic environment may
lead to uncertainty being incorrectly attributed to efficiency and
productivity differences (Chambers & Quiggin, 2000; O’Donnell
et al., 2010). Skevas, Oude Lansink, and Stefanou (2012) investigate
the impacts of risk on efficiency using Simar and Wilson (2007)
proposal based on truncated regression and bootstrapping tech-
niques. Risk is captured by considering the effect of climatic condi-
tions on farmers’ production environment. Results provide
evidence of a dramatic increase in DEA efficiency ratings as a result
of considering production uncertainty along with the dynamic
impacts of pesticides on production.

In a different line of research, Chambers and Quiggin (1998) and
Chambers and Quiggin (2000) propose to characterize production
under uncertainty by differentiating outputs depending on the
state of nature in which they are realized. This characterization
leads to a stochastic technology based on a state-contingent input
correspondence. The state-contingent framework is based on the
Arrow–Debreu–Savage conceptualization of uncertainty in terms
of a state space that allows for output substitution across states
of nature. Standard stochastic production functions require non-
substitutability between state-contingent outputs (Chambers &
Quiggin, 2000, 2002, 2006). This restriction implies that producers
can only respond to changes in the production environment by
changing input use, but not reallocating state-contingent outputs.
The state-contingent framework has been shown to yield more
precise efficiency measures relative to approaches that impose this
restriction (Chambers & Quiggin, 2006; O’Donnell et al., 2010).
Serra, Chambers, and Oude Lansink (2014) have recently derived
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combined technical and environmental efficiency measures for a
sample of Catalan farms. Their analysis recognizes the stochastic
conditions under which production takes place by means of the
state-contingent framework. Chambers, Hailu, and Quiggin
(2011) approximate the stochastic technology by a state space par-
titioned by defining event-specific production relationships. Event-
specific representations are applied to a DEA framework by using
realized values of the random inputs to partition the data. Under
this partition, efficiency estimates increase dramatically, thus con-
firming that ignoring the stochastic nature of production will lead
to biased efficiency estimates.

There is ample evidence that economic agents are not neutral to
risk (Antle, 1989; Bar-Shira, Just, & Zilberman, 1997; Chavas & Holt,
1990; Hennessy, 1998; Just & Pope, 2002; Saha, 1997; Serra,
Zilberman, & Gil, 2008; Serra, Zilberman, Goodwin, &
Featherstone, 2006). To the extent that economic decisions are
influenced by risk preferences, risk implicit in the state-contingent
output distribution should have an impact on the efficiency with
which economic agents operate (Battese, Rambaldi, & Wan,
1997). We measure this impact through Daraio and Simar’s
(2005) nonparametric frontier model, that allows for the influence
of external factors on firm efficiency ratings.

In frontier analysis, nonparametric efficiency measures are
based upon the assumption that all observed units belong to the
attainable production set. As a result, super-efficient outliers can
have an influential impact on these envelopment estimators.
Robustness can be increased through a trimming process that
results in the frontier not enveloping all data points. Daraio and
Simar (2005) provide a probabilistic formulation of a robust non-
parametric order-m efficiency model, being m the trimming
parameter, that allows for the influence of environmental variables
that cannot be controlled by the producer, but that shape the out-
come of production. Daraio and Simar (2005) proposal allows
determining whether the environmental variable promotes or
reduces efficiency. However, it does not adequately capture the
stochastic conditions under which production takes place. The
state-contingent framework proposed by Chambers and Quiggin
(2000) can be implemented using standard tools of efficiency anal-
ysis when ex-ante outputs are known. As a result, we extend
Daraio and Simar’s (2005) framework to examine efficiency and
productivity in truly state-contingent terms. The extended model
is not only robust to outliers, but also to incorrect interpretations
of uncertainty effects as efficiency effects.

Our empirical application focuses on cross-section data of ara-
ble farms in Catalonia, Spain. We conduct a novel production
survey to elicit information from farmers on their ex-ante state-
contingent outputs and overall production practices. Eliciting
information on ex-ante state-contingent outputs is a highly com-
plex process that can be subject to subjectivity regarding beliefs
on the crop yield distribution and that might generate biased
responses. Some respondents may provide answers in a rush or
exaggerate their responses, hence the importance to use tech-
niques that are robust to the presence of outliers.

2. Methods

Within the state-contingent framework, uncertainty is repre-
sented by a set of states of nature X from which nature makes a
draw. Random variables in the production process can be mea-
sured as maps from the set of states X to the reals. Assume a single
random output firm. The random output can be represented as a
vector ~y 2 RX

þ, where ~y ¼ fys : s 2 Xg, being ys the realized (ex post)
value of the random output variable ~y if nature chooses state s. The
non-random input vector is denoted by x 2 RN

þ. Denote by
Z 2 Z � Rr the vector of environmental factors that are exogenous
to the production process, but may explain part of it.

The stochastic production technology is represented by the set
w :¼ ðx; ~yÞ : xcan produce~yf g. The boundaries of w are an indicator
of the efficiency with which firms operate. Under the influence of
environmental variables, the technology set is defined as
wz :¼ fðx; ~yÞjz : x can produce ~yg. Note that for all z 2 Z, wz # w.
The interpretation of the technology is as follows: before knowing
the realization of the state of nature, the producer chooses ðx; ~yÞ
from within the technology set, thus making a decision about non-
stochastic inputs and stochastic outputs. After this selection has
been made, nature makes a choice from s e X. For agricultural
technologies, s e X is usually related to weather conditions. It is
important to note that ex-post realizations of random outputs
are chosen by nature, and not by the producer (Chambers et al.,
2011). Our article hypothesizes that the risk that firms face in
the process from selecting the ex-ante output to obtaining ex-post
realized production can have an impact on technical efficiency rat-
ings, and we capture this risk through the environmental variable.
Thus, in our particular application, z = z(s).

Efficiency scores with which producers operate are usually
approximated through the radial distance from each production
unit to the production frontier. Along these lines, the Farrell–
Debreu output-oriented efficiency score for a firm operating
with w :¼ fðx; ~yÞ : xcan produce~yg can be defined as kðx; ~yÞ ¼
supfkjðx; k~yÞ 2 wg, being kðx; ~yÞ the proportionate increase in out-
puts that can be achieved using the same technology and input
combination. Since it is unknown, an estimator of the production
frontier is required. Commonly used nonparametric estimators
such as the Data Envelopment Analysis (DEA) initiated by Farrell
(1957), or the Free Disposal Hull (FDH) proposed by Deprins,
Simar, and Tulkens (1984) are based on the envelopment approach,
which assumes that all observed units belong to the attainable set.
Nonparametric approaches do not impose restrictive parametric
structures to characterize the frontier. They however rely on vari-
ous assumptions on the technology. While DEA and FDH share the
postulate of free disposability, scale restrictions are imposed by
DEA but not by FDH, being the latter a desirable FDH property.
Convexity of the technology is a postulate of DEA, but is not
imposed in FDH. Desirability of the convexity property is an open
question that depends on the objective of the research (Lovell &
Vanden Eeckaut, 1993).

While DEA and FDH have their own strengths and weaknesses,
some scholarly papers have argued that FDH provides a better data
fit than DEA (Tulkens, 1993; Vanden Eeckout, Tulkens, & Jamar,
1993). DEA techniques usually outperform FDH methods when
the interest of the analysis is on the structure of the production
technology. In contrast, FDH usually outperforms DEA in technical
efficiency measurement, because it constructs a technology that
envelops the data more closely than DEA. More specifically, FDH
does not include all the points on the lines connecting the vertices
of the DEA frontier. Rather, it only considers DEA vertices and the
free disposal hull points interior to the vertices. This implies that
while DEA mechanisms compare each firm with a hypothetical
efficient frontier, FDH methods define the reference point among
operating firms, which increases the credibility of the method.
Also, on computational grounds, FDH involves an algorithm that
yields a solution that is both very simple and efficient (Lovell &
Vanden Eeckaut, 1993). Our analysis stems from the FDH technol-
ogy set estimator which can be expressed as ŵFDH :¼ fðx; ~yÞ 2
RNþX
þ j~y � eY i; x � Xii ¼ 1; . . . ;ng, where i = 1, . . . , n denotes the

observation number. The empirical problem consists of estimating
the frontier and the efficiency scores from a random sample of pro-
duction units v = {(Xi, Yi)|i = 1, . . . , n}.

Cazals, Florens, and Simar (2002) have proved that, under free
disposability of inputs and outputs, a probability function of
ðX; eY Þ on RN

þ � RX
þ, Hðx; ~yÞ ¼ PrðX � x; eY � ~yÞ, can be used to charac-

terize the production frontier. Hðx; ~yÞ represents the probability of

238 T. Serra, A. Oude Lansink / European Journal of Operational Research 239 (2014) 237–242



Download English Version:

https://daneshyari.com/en/article/479803

Download Persian Version:

https://daneshyari.com/article/479803

Daneshyari.com

https://daneshyari.com/en/article/479803
https://daneshyari.com/article/479803
https://daneshyari.com

