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a b s t r a c t

Most previous optimization models on technology adoption assume perfect foresight over the long term.
In reality, decision-makers do not have perfect foresight, and the endogenous driving force of technology
adoption is uncertain. With a stylized optimization model, this paper explores the adoption of a new
technology, its associated cost dynamics, and technological bifurcations with limited foresight and uncer-
tain technological learning. The study shows that when modeling with limited foresight and technolog-
ical learning, (1) the longer the length of the decision period, the earlier the adoption of a new technology,
and the value of a foresight can be amplified with a high learning rate. However, when the decision period
is beyond a certain length, further extending its length has little influence on adopting the new technol-
ogy; (2) with limited foresight, decisions aiming at minimizing the total cost of each decision period will
commonly result in a non-optimal solution from the perspective of the entire decision horizon; and (3)
the range of technological bifurcation is much larger than that with perfect foresight, but uncertainty in
technological learning tends to reduce the range by removing the early adoption paths of a new
technology.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Most of the literature on technology adoption is from the per-
spective of the psychology-based acceptance of new technologies
by individual users or organizations. Well-known works from this
perspective include the technology adoption lifecycle model (see
Rogers, 1962), the Bass diffusion model (Bass, 1969), and the tech-
nology acceptance model (TAM) (see Bagozzi, Davis, & Warshaw,
1992; Davis, 1989). There are times when human society as a sys-
tem needs to consider the adoption of new technologies for the
sustainable development of the system, i.e., there are occasions
when technology adoption needs to be studied from the perspec-
tive of social planning instead of from the perspective of individual
users or organizational psychology. Technology adoption with
social planning is not commonly appropriate for end-use technol-
ogies; instead, they are more applicable to infrastructures, such as
power plants and railways.

Operational optimization models have been a major tool in the
study of technology adoption from the perspective of social
planners. The purpose of these models is mainly to determine

the optimal technology adoption path that minimizes the total cost
of the entire system, satisfying various constraints. Well-known
examples of such models include the MESSAGE (Messner &
Strubegger, 1994) and MARKAL (Seebregts, 2001) models. Histori-
cal observations show that the diffusion of new technologies com-
monly takes a long time (e.g., see Geroski, 2000), and the
environmental impact of using some technologies could be longer;
for example, CO2 emitted by power-generating technologies may
remain in the atmosphere for a very long time (IPCC, 2007). Thus,
these models are developed with a long-term perspective.

Most works analyzing technology adoption with an operational
optimization framework assume perfect foresight for a long period
of time (e.g., see Azar, Lindgren, & Andersson, 2003; Barreto &
Kypreos, 2002; Ma, 2010). That is, these models assume that there
is a decision-maker who has complete information about the
future. However, in fact, nobody can have such perfect foresight.
There are always many unpredictable factors that may affect the
future development of the system. These models usually address
unpredictable factors by assuming different future scenarios. In
the real world, decision-makers commonly adjust technology
strategies, based on evaluations of the market and technologies
at different stages. In short, decisions related to technology adop-
tion are commonly made with limited foresight, but adaptively,
in reality.
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In recent years, some researchers have begun to introduce lim-
ited foresight into operational optimization models of technological
change. For example, Hedenus, Azar, and Lindgren (2006) intro-
duced limited foresight into the Global Energy Transition (GET)
model; Martinsen, Krey, and Markewitz (2007) developed a
multi-period IKARUS optimization model in which optimal solu-
tions for previous stages have effects on later ones; Keppo and
Strubegger (2010) developed a multi-stage MESSAGE model to
study the diffusion of new energy technologies and their impact
on CO2 emissions, and the decision periods and their overlaps in
their model can be determined freely. These studies focused mainly
on the application of limited foresight. Technological change in
these studies was treated mainly as exogenous and deterministic.

Technological learning is considered to be the endogenous driv-
ing force of the adoption of new technologies (e.g., see Ma, Grubler,
& Nakamori, 2009; Schwoon, 2008). This means that the cost of
using new technologies tends to decrease as the experience of
using them accumulates (Arrow, 1962; Arthur, 1989). Historical
observations show that technological learning is quite uncertain
(McDonald & Schrattenholzer, 2001). In optimization models with
perfect foresight, the expected risk cost that results from overesti-
mating technology learning is summed over the entire time hori-
zon (e.g., see Grubler & Gritsevskyi, 1998; Ma, 2010). However,
with limited foresight, decision-makers are expected to address
the risk cost stage-by-stage separately and how this will influence
the adoption of a new technology remains an unexplored question.

With technological learning, optimization models will be non-
linear and non-convex, and thus, there could be more than one local
optimal solution with very similar total costs but different technol-
ogy adoption paths and thus different environmental impact, which
has been called technological bifurcation (Chi, Ma, & Zhu, 2012; Ma,
2010). Studies on technological bifurcations can help decision-
makers understand how to lead the adoption of advanced and envi-
ronmentally friendly technology without incurring extreme costs.
With limited foresight, technology adoptions will be decided by a
series of sequential decisions instead of by a one-time decision with
perfect foresight, and how this will influence technological bifurca-
tions constitutes another unexplored question.

With a stylized techno-economic system, we explore in this
paper the adoption of a new technology, its associated cost dynam-
ics, and technological bifurcations with two types of limited fore-
sight schemes and uncertain technological learning. The model
and study presented in this paper are not intended by any means
to be ‘‘realistic’’ in the sense of showing technological or sectoral
detail. Rather, the model is intended to be used primarily for
exploratory modeling purposes and as a heuristic research device
to examine in depth the impacts of alternative model formulations
of the dynamics of technology adoption.

The rest of the paper is organized as follows. Section 2 intro-
duces an optimization framework for technology adoption and
two types of limited foresight schemes. Section 3 introduces a sim-
plified techno-economic system model based on the optimization
framework introduced in Section 2. With the stylized model intro-
duced in Section 3, Section 4 analyzes how different limited fore-
sight and uncertain learning influence the adoption of a new
technology and its associated cost dynamics. Section 5 analyzes
technological bifurcations with the two limited foresight schemes.
Section 6 provides concluding remarks.

2. Modeling framework with perfect and limited foresight

2.1. Optimization modeling framework for technology adoption

Fig. 1 is an illustration of the modeling framework used in this
paper. The left side of the figure lists natural resources, such as

coal, crude oil, and gas; the right side lists human demands, such
as transportation and heating, and, in the middle, there are various
types of technologies (denoted as Tech 1,Tech 2, . . . ,Tech N) that
link human demands to natural resources. For example, Resource
1 is coal, Tech 1 is a technology to extract coal from nature, and
Tech 2 is a coal power plant that can generate electricity with coal.
Thus, Tech 1’s output can be Tech 2’s input, and Tech 2’s output –
electricity – can be used as an input for other technologies to pro-
vide services such as heating and transportation. Many large-scale
models in use, such as the MESSAGE (Messner & Strubegger, 1994)
model and the MARKAL (Seebregts, 2001) model, have essentially
the same structure as that shown in Fig. 1.

With the structure shown in Fig. 1, suppose there are N technol-
ogies available in the economic system under study, the technol-

ogy strategy at time t can be denoted as Xt ¼
xt
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cost vector for strategy Xt can be denoted as Ct ¼ ðct
1; . . . ; ct

NÞ. Here,
the strategy of using a technology is expressed numerically, it is
quantified by the new installed capacity and production of the
technology, i.e., xt

i ¼ fst
i ; p

t
ig, where st

i denotes the volume of tech-
nology i’s capacity installed at time t, and pt

i denotes the produc-
tion of technology i at time t. The simplified objective function
(see Messner, Golodnikov, & Gritsevskyi, 1996) of a deterministic
(endogenous/exogenous) technological change model can be writ-
ten as:

min
XT

t¼1

CtXt; ð1Þ

where T denotes the time scale of the problem. The above objective
function will be subject to various constraints related to demands,
resources, and relationships among technologies (one technology’s
output may be another’s input). With technological learning, Ct is
a function of initial status and decisions at previous strategies;
that is,

Ct ¼ f ðX0;X1; . . . ;Xt�1;BÞ; ð2Þ

where B is a vector containing technology learning rates and X0

denotes the initial status of technologies. Note that the initial status
plays an important role in technological learning models. Combin-
ing Eq. (2) with Eq. (1), the objective function can be written as

min
XT

t¼1

f ðX0;X1; . . . ;Xt�1;BÞXt : ð3Þ

Using Xt�1 to denote (X0, X1, . . . , Xt�1), Eq. (3) can be simplified to

min
XT

t¼1

f ðXt�1;BÞXt : ð4Þ

With technological learning, the objective function in Eq. (4) is a
non-linear non-convex function.When incorporating the uncer-
tainty of technological learning into the model, the elements in
vector B in Eq. (4) are treated as random values.1 We define the vec-
tor of uncertain technological learning rates as B(W), where W
denotes the vector of elements from probability spaces that are com-
monly characterized by lognormal distributions (McDonald &
Schrattenholzer, 2001). For a given strategy along the entire time
scale, X = {X1, . . . , XT}, and an observed scenario W of the cost path

1 In real applications, we can assume that some technologies have no learning
effect, and their learning rates can be viewed as deterministic and equal to 0. For
example, see the introduction to ‘‘existing’’ technology in Section 3.
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