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a b s t r a c t

The main problem of portfolio optimization is parameter estimation error. Various methods have been
suggested to mitigate this problem, among which are shrinkage, resampling, Bayesian updating, naïve
diversification, and imposing constraints on the portfolio weights. This study suggests two substantial
extensions of the constrained optimization approach: the Variance-Based Constraints (VBC), and the Glo-
bal Variance-Based Constraints (GVBC) methods. By the VBC method the constraint imposed on the
weight of a given stock is inversely proportional to its standard deviation: the higher a stock’s sample
standard deviation, the higher the potential estimation error of its parameters, and therefore the tighter
the constraint imposed on its weight. GVBC employs a similar idea, but instead of imposing a sharp
boundary constraint on each stock, a quadratic ‘‘cost’’ is assigned to deviations from the naive 1/N weight,
and a single global constraint is imposed on the total cost of all deviations. Comparing ten optimization
methods we find that the two new suggested methods typically yield the best performance, as measured
by the Sharpe ratio. GVBC ranks first. These results are obtained for two different datasets, and are also
robust to the number of assets under consideration.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Mean–Variance (MV) rule of Markowitz (1952, 1959) is
probably the most commonly employed investment rule by both
academics and professional investors, hence the intensive research
on the theoretical and practical implication of the MV paradigm. If
one assumes normality of returns and risk aversion, it is well
known that the MV rule is optimal in the expected utility frame-
work (see Tobin (1958) and Hanoch and Levy (1969)).2 Therefore,
the application of the MV rule is straightforward as long as the var-
ious parameters of the multivariate normal distribution are known.
Thus, given the normality assumption, the criticism of employing
Markowitz’s MV optimizer in a straightforward manner is not re-
lated to the theoretical aspects of this paradigm, but rather to the

statistical estimation errors of the various parameters needed to em-
ploy this rule in practice. This problem, and various solutions for
dealing with it, are the focus of this paper.

The application of the MV rule presumes that the investors have
exact knowledge of expected returns, variances and covariances. In
practice, the ex-ante parameters are unknown and one must rely
on the limited available information, which is generally composed
from the historical returns. However, employing the historical dis-
tributions of returns, the MV rule typically yields unacceptable
investment strategies, with extreme portfolio weights, and with
many assets held short. Moreover, the aggregate percent of the
portfolio in short position in the MV optimal investment strategy
based on historical returns is generally very large, and may reach
hundreds and even thousands of percent. While holding short posi-
tions is a legitimate investment strategy, many institutional inves-
tors refrain from having short positions, and typically restrict the
investment weights (e.g., see Frost and Savarino, 1988, p. 29).

In addition, one cannot be very confident about the portfolio
weights generated by the MV optimizer with sample estimates, be-
cause these weights are very sensitive to the sample parameters,
especially to the sample means (see Best and Grauer (1991) and
Chopra and Ziemba (1993)). This is quite unsettling, as a manager
may find that the MV optimal portfolio based on the sample of the
last 50 monthly returns, for example, is completely different than
the portfolio constructed based on the last 60 months. Numerical
analyses of the MV efficiency frontier reveals that even a little
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reduction in the mean of a given asset may shift the asset from a
large long position to a large short position. Thus, even a small dif-
ference between the true unknown means and the sample esti-
mated means, quite in the plausible error range, may yield a
large deviation between the optimal investment strategy and the
one recommended based on the estimated sample parameters.

Estimation errors may also lead to incorrect theoretical conclu-
sions. For example, Levy and Roll (2010) show that with historical
mean returns and standard deviations the market portfolio is MV
inefficient. Yet, little changes in these parameters, which are statis-
tically legitimate, reveals that the market portfolio is located on the
MV frontier. This finding indicates that sampling errors in the var-
ious means may greatly influence the conclusion regarding the
validity of Sharpe (1964) – Lintner (1965) CAPM, let alone the
MV efficiency of a particular portfolio under consideration.

Because of the theoretical and practical importance of the MV
rule, numerous papers suggest various ways to deal with the fact
that the ex-ante parameters are unknown and sampling errors
strongly affect the results. As a consequence of the extreme sensi-
tivity of the optimal diversification weights to the potential errors
in the sample estimates of the mean returns, and the typically large
errors involved in estimating mean returns, some researchers sug-
gest an extreme investment policy which ignores the historical
sample means altogether, and focuses on the investment weights
corresponding to the sample minimum variance portfolio (see
Green and Hollifield (1992)). An even more extreme suggestion is
to ignore all historical parameters, means and variance–covariance
matrix alike, and to employ the naïve diversification strategy,
namely, investing an equal proportion of 1/N in each of the N avail-
able assets (see, for example, DeMiguel et al. (2009) and Duchin
and Levy (2009)). Most other suggested methods incorporate all
the sample parameters, but with some modification, either to the
parameters or to the optimization procedure. One possibility is to
apply ‘‘shrinkage’’ to the sample parameters (Ledoit and Wolf,
2003, Jagannathan and Ma, 2003). Other methods which consider
the sampling errors and suggest manners to mitigate these errors
are the Bayesian approach (Jorion, 1986; Markowitz and Usmen,
2003), the Monte Carlo resampling approach (Michaud, 1989,
1998), and the Black and Litterman (1992) approach. Many of the
suggested modifications are related hence, achieve similar results.
In the next section we provide a brief literature review which cov-
ers the various methods examined in the present study.

Which optimization method is better at handling the sampling
errors, hence performs best? Is the relative ranking of the various
methods invariant to the number of assets under consideration? If
constraints are imposed on the portfolio weights to avoid extreme
positions due to sampling error, what type of constraints should
be imposed, and how stringent should they be? In answering these
questions, one needs to consider two potential economic losses that
should be balanced in the derivation of the portfolio weights:

(a) Using the historical sample parameters may lead to a portfo-
lio which is very different from the optimal portfolio which
is based on the true parameters, due to the sampling errors.

(b) Drastically modifying the sample parameters (or completely
ignoring them) or, alternatively, imposing severe constraints
on the portfolio weights may lead, once again, to sub-opti-
mality and economic loss. For example, if the parameter esti-
mates are very close to the true parameters, imposing
stringent constraints on the weights may hamper
performance.

Researchers who suggest modifications for the simple MV opti-
mizer are aware of the importance of the historical sample data, as
well as the above two possible losses. Hence, most of them do not
advocate ignoring the historical data completely, but rather giving

it some weight in the portfolio construction procedure. The main
issue the investor faces is how much weight to give to the histor-
ical information. Indeed, the goal is to find a golden path that bal-
ances the two potential losses discussed above. Namely, one needs
to employ the information from the sample returns, but simulta-
neously to restrict extreme diversification policies, which may be
due to sampling errors.

In this paper we compare the performance of the main optimi-
zation methods suggested in the literature. In addition, we suggest
two novel methods that turn out to improve upon the performance
of the existing methods mentioned above. We call these two new
methods Variance-Based Constrained optimization (VBC) and Glo-
bal Variance-Based Constrained optimization (GVBC). These meth-
ods are generalizations of the portfolio weight constraints method.
The main idea in both new methods is to take into account the fact
that the estimation error is not the same for all stocks: the estima-
tion errors are larger for stocks with larger sample variances. The
VBC method imposes constraints that are inversely related to the
stock’s sample standard deviation: the lower the standard devia-
tion, the lower the estimation error, and the looser the constraints
imposed on the stock’s portfolio weight.

The VBC method, however, does not imply a higher ‘‘cost’’ for
more extreme weights, as long as they are within the allowed
bounds. It also does not take into account the relative contribution
of different stocks to the portfolio’s performance. For example, if
we have two stocks with the same sample standard deviation
but very different sample means, we may want to allow looser con-
straints for the stock with the higher mean, because it contributes
more to the portfolio’s mean. The Global VBC (GVBC) method
incorporates these two elements by formulating a quadratic ‘‘cost’’
on the deviation of weights from the naïve 1/N weight and impos-
ing a single constraint on the total cost of all weights. We explain
these two methods in detail in Section 3.

Methodologically, the performance of the various optimization
methods can be analyzed in several different frameworks. One
can assume stable return distributions, or alternatively, one can
employ out-of-sample analysis. The out-of-sample framework
may yield very similar results to the stable case if indeed the return
distributions are stable, but may yield different results when the
distributions vary over time. While the stable distribution scenario
measures purely the economic loss due to sampling estimation er-
rors, the out-of-sample approach measures two combined effects:
sampling errors for given distributions, as well as the instability of
the distributions. Professional investors are rightfully interested in
the combined effect, namely, out-of-sample analysis. However, the
empirical out-of-sample performance of the various optimization
methods under consideration are highly sensitive to the sample
period selected for the analysis. One method may outperform the
other if, say, the last decade is considered, and the opposite holds
if the last two decades are considered. Kritzman et al. (2010) con-
vincingly demonstrate this point by showing that the results of
DeMiguel et al. (2009a) in favor of naïve diversification are over-
turned when long sample periods are employed. Thus, it may be
very hard to reach general conclusions based on out-of-sample
analysis. In contrast, the stable distribution approach allows a
more controlled experiment, as the true parameters are known
to a ‘‘referee’’ who compares the performance of the various sug-
gested methods, where each method relies solely on sample infor-
mation. This method is employed by Frost and Savarino (1988),
Michaud (1998), Markowitz and Usmen (2003), and Harvey et al.
(2008), and it is the one we follow here.

The structure of this paper is as follows. Section 2 provides a
brief review of the methods that appear in the literature and are
examined in this paper. Section 3 introduces the two new methods
(VBC and GVBC) suggested here. Section 4 provides the methodol-
ogy and results. Section 5 concludes.
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