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a b s t r a c t

Motivated by Markowitz portfolio optimization problems under uncertainty in the problem data, we
consider general convex parametric multiobjective optimization problems under data uncertainty. For
the first time, this uncertainty is treated by a robust multiobjective formulation in the gist of Ben-Tal
and Nemirovski. For this novel formulation, we investigate its relationship to the original multiobjective
formulation as well as to its scalarizations. Further, we provide a characterization of the location of the
robust Pareto frontier with respect to the corresponding original Pareto frontier and show that standard
techniques from multiobjective optimization can be employed to characterize this robust efficient
frontier. We illustrate our results based on a standard mean–variance problem.
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1. Motivation and overview

Prompted by the well-known strong data dependency of
mean–variance optimization, we investigate how to treat multiob-
jective optimization problems with uncertain parameters. The
framework of multiobjective optimization, in which several con-
flicting objectives have to be minimized simultaneously, can be
seen as the natural setting for portfolio optimization problems, as
such problems invariably have to deal with the conflicting notions
of revenue and risk. However, and equally naturally, these problems
also have to deal with uncertainty: problem data (like expected
future return and covariances of random variables) are not known
precisely, and only estimates are available. We are thus facing mul-
tiobjective optimization problems with uncertain parameters.

In this paper, we want to follow the idea of the robust
counterpart approach where an entire set of possible parameter
realizations – called uncertainty set – is used for the optimization,
but no assumptions about the distribution of the unknown
parameters is needed, in contrast to many other robustification
approaches. In the context of portfolio optimization, several
authors have considered instances varying from theoretical to
practical settings, amongst others Goldfarb and Iyengar (2003),
Tütüncü and Koenig (2004), Ceria and Stubbs (2006), Meucci
(2005), Lutgens (2004) or Schöttle and Werner (2006). Most of
these approaches have in common that the uncertainty sets are
chosen based on statistical reasoning, but other approaches are
followed as well. All these approaches are based on just one

specific choice of the risk-aversion parameter, i.e. only robustifica-
tion of a particular instance of risk-return trade-off is considered.

In contrast to these approaches, we propose a different and
completely novel approach. Instead of following Markowitz
(1952) and refering to some scalar portfolio optimization problem,
we start with the multiobjective formulation of the mean–variance
portfolio problem in the gist of Kuhn and Tucker (1951). Our main
aim is then to robustify the complete efficient frontier to obtain a
robust efficient frontier. In this context, our main contributions are
as follows:

� We introduce for the first time a robust counterpart to a
multiobjective programming problem in the style of Ben-Tal
and Nemirovski (1998, 1999).
� We investigate the relationship between the robust Pareto

frontier and the original Pareto frontier and show that the
robust frontier lies between the original nominal efficient fron-
tier and some corresponding easy-to-determine upper bound.
� We demonstrate that robust efficient frontiers can be found by

standard methods of robust and multiobjective programming
under commonly made assumptions on the uncertainty.
� We pay particular attention to the case of portfolio optimization

and show that the resulting robust multiobjective counterpart
of the mean–variance portfolio optimization problem can be
treated in a numerically efficient manner.

We want to emphasize that, although motivated by portfolio
optimization, our methodology is general enough to be applied
to any convex parametric multiobjective optimization problem
under data uncertainty. As such, it might be especially useful for
optimization problems arising in engineering.
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The rest of the paper is organized as follows: Section 2 gives an
overview of the necessary machinery from multiobjective optimi-
zation (Section 2.2), robust optimization (Section 2.3) and (robust)
portfolio optimization (Section 2.4) that we need further on.
Readers already familiar with these topics can easily skip this part
of the presentation. Section 3 then contains the main results of this
paper: we provide a proper notion of a robustified multiobjective
problem and show that it leads, via scalarization, to families of
robust single-objective problems that can also be derived in a
different way. We also provide an alternative motivation for the
robust counterpart and characterize the location of the robust effi-
cient frontier with respect to the original frontier. Section 4 consid-
ers an illustrative numerical example from portfolio optimization
that provides further insight into the proposed robust counterpart.
Finally, we conclude in Section 5.

2. Introduction to multiobjective and robust optimization

2.1. Notation

The following notation is used throughout. We use
Rþ ¼ fx 2 R : x P 0g and Rþþ ¼ fx 2 R : x > 0g for the set of non-
negative resp. strictly positive real numbers. KðMÞ denotes the
space of all non-empty, convex and compact subsets of a given
non-empty and convex set M � Rn. Further, BeðxÞ denotes the
closed e-ball around some vector x 2 Rn; jjxjj denotes the 2-norm
for x 2 Rn and jjRjj denotes the Frobenius norm for R 2 Sn, where
S

n is the space of all symmetric n� n matrices and S
n
þ is the cone

of positive semidefinite matrices.

2.2. Multiobjective optimization

In this section we provide a brief introduction of the concepts in
multiobjective optimization that are used in this paper. We follow
closely the exposition given by Fliege and Vicente (2006).

In multiobjective optimization, several functions

f1; . . . ; fp : Rn�!R

with p > 1 have to be minimized simultaneously over a set of
feasible points characterized by a (convex) compact set X 2 KðRnÞ.
The general problem can be conveniently stated in the form

efmin f : Rn�!Rp

s:t: x 2 X;
ðMÞ

where f ¼ ðf1; . . . ; fpÞ>, and the exact meaning of ‘‘efmin’’ still has to
be specified. We will do so in what follows.

Remark 2.1. Multicriteria optimization is the ideal setting to
analyse portfolio optimization problems in the sense of Markowitz.
If we work in a financial market with n risky assets and x 2 Rn is a
portfolio vector

Pn
i¼1xi ¼ 1

� �
, we can simply set p ¼ 2, let, say,

f1ðxÞ ¼ sðxÞ ¼ x>Rx be the risk function for some covariance matrix
R 2 Sn

þ and let f2ðxÞ ¼ �mðxÞ ¼ �l>x be the return function for
some vector of expected returns l 2 Rn.

The reason for the formulation given here is that there is no
standard total order for the image space Rp. In contrast to this
situation, in the classical single-objective case one always uses
the standard total order defined by x < y :$ y� x 2 Rþþ
ðx; y 2 RÞ. Nevertheless, the idea of specifying an order by using a
specific set defining it can be conveniently employed in multiob-
jective optimization, as the following discussion will show.

If an arbitrary order relation � on Rp and a set A # Rp are given,
the vector a 2 Rp is called minimal or a minimizer w.r.t. � in A if

a 2 A and a � b for all b 2 A. (Here, � is the reflexive hull of �,
i.e., a � b if and only if a ¼ b or a � b.) Minimal points usually do
not exist, one reason being that it is seldom the case that � is a to-
tal order. A weaker concept, the concept of domination is therefore
needed. A point a dominates a point b, if a � b and a–b holds. A
point a is nondominated in A, if a 2 A and there does not exist a
point c 2 A with c � a and c–a. This approach raises the question
about which of the many orders in Rp one should choose when
solving multicriteria problems.

Let K # Rp be an arbitrary set. Define A :¼ f ðXÞ and the order

x<K y :$ y� x 2 K: ð2:1Þ

For such an order relation, define further

effKðAÞ :¼ fa 2 Aja nondominated in A w:r:t<Kg;

the set of all nondominated or efficient points of the set A. It is this
notion of efficiency or optimality that we will use when we speak
of solutions of ðMÞ, and the operator efmin in ðMÞ is understood to
search for such efficient points: the set of solutions of the problem
ðMÞ is the preimage of all nondominated points of the set A ¼ f ðXÞ with
respect to the order <K .

The next theorem is well known, see, e.g. Göpfert and Nehse
(1990) or Fliege and Vicente (2006).

Theorem 2.2. Let K � Rp be a set and let <K be the binary relation
defined by K as in (2.1). Then, the following statements hold:

1. If 0 2 K then <K is reflexive.
2. If K þ K # K then <K is transitive.
3. If K is a cone containing no lines, i.e., K \ �K # f0g, then <K is

anti-symmetric. (In this case, the set K is also called pointed.)
4. The order <K is total if and only if K [ �K ¼ Rp.
5. The set K is closed if and only if the relation <K is ‘‘continuous at 0’’

in the following sense. For all a 2 Rp and all sequences ðaðiÞÞi2N in
Rp with limi!þ1aðiÞ ¼ a and 0<K aðiÞ for all i 2 N it follows that
0<K a holds.

Note that K þ K # K holds if K is a convex cone. According to the
theorem above, practicioners prefer to choose a closed convex cone
K with 0 2 K which contains no lines to define the partial order <K .
(Note that the lexicographic order in Rp is defined by a cone which
is not closed.) Moreover, in our context the space Rp will be the im-
age space of functions to be minimized. As a consequence, it is
important for numerical reasons to have scale-invariance of the in-
duced order. This means that if x<K y and k > 0 then kx<Kky, a
property which holds if and only if the set K is a cone.

Using a fixed set K to define an order relation as in (2.1) has one
additional advantage. For an arbitrary relation �, the sets

CðaÞ :¼ fb 2 Rpja � bg � a ð2:2Þ

are constant if there exists a set K such that �¼ <K holds. Indeed,
if �¼ <K then CðaÞ ¼ fb 2 Rpja � bg ¼ fb 2 Rpja<K bg ¼ fb 2 Rp

jb� a 2 Kg ¼ aþ K . This means that � is translation-invariant, i.e.,
xþ z � yþ z for all z if and only if x � y.

To summarize the discussion above: we need to choose a convex
cone K � Rp with 0 2 K in order to define an order <K . Other attri-
butes of K that can be used to our advantage are closedness, pointed-
ness, and K [ �K ¼ Rp but, as pointed out before, we cannot have all
of these at the same time.

Often, K is chosen to be the positive orthant, K ¼ Rp
þ, which

gives exactly the standard definition of order in multicriteria opti-
mization and especially in the specific setting of mean–variance
optimization.

We will now consider linear forms from intðK�Þ, where K� is the
dual cone of K defined by K� ¼ fkj8a 2 K : k>a P 0g. It turns out
that in the case of convex cones and sets, these linear forms can
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