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a b s t r a c t

Asset allocation among diverse financial markets is essential for investors especially under situations
such as the financial crisis of 2008. Portfolio optimization is the most developed method to examine
the optimal decision for asset allocation. We employ the hidden Markov model to identify regimes in var-
ied financial markets; a regime switching model gives multiple distributions and this information can
convert the static mean–variance model into an optimization problem under uncertainty, which is the
case for unobservable market regimes. We construct a stochastic program to optimize portfolios under
the regime switching framework and use scenario generation to mathematically formulate the optimiza-
tion problem. In addition, we build a simple example for a pension fund and examine the behavior of the
optimal solution over time by using a rolling-horizon simulation. We conclude that the regime informa-
tion helps portfolios avoid risk during left-tail events.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Portfolio optimization is the most researched and practiced
method to examine the optimal decision for asset allocation. The
mean–variance model introduced by Markowitz (1952) is the basis
for portfolio selection, which finds the optimal portfolio by com-
puting the risk-return tradeoff using the estimated mean vector
and the covariance matrix of asset returns. One of the advantages
of the Markowitz model is that there are no restrictions on the type
of assets that can be included in the model. For example, commod-
ity futures, which has become drastically popular among investors
as a major asset class, like stocks and bonds can be easily included
in the model to solve the portfolio selection problem. However, the
Markowitz model is a single-period model without stochastic char-
acteristics and also assumes that the multi-dimensional return ser-
ies of assets have constant mean vector and covariance matrix.

In this paper, we extend the traditional Markowitz portfolio
model to address the changing nature of the covariance matrix un-
der differing market conditions. Certainly, one of the severe issues
arising during 2008 crash was the increase in correlation (contagion)
that occurred and the ensuing lack of diversification by many inves-
tors (even those applying Markowitz models). The regime detection
methodology provides an intuitive and practical way to anticipate
changing correlation conditions. As such, the research is on the path-

way of the original Markowitz tradition. There have been many
studies indicating the existence of multiple regimes in financial mar-
kets especially the stock market. The hidden Markov model (HMM)
is a popular method for regime identification, which has been widely
used in engineering and science. Hamilton (1989) uses HMM to pre-
dict business cycles of the US economy by analyzing the US Gross
National Product (GNP). Further discussions on HMM in finance
can be found in Turner et al. (1989), Hansen (1992), Hamilton and
Susmel (1994), and Garcia (1998). These researches commonly de-
scribe that the high (low) return regime of the equity market shows
low (high) volatility. In addition, Guidolin and Timmermann (2007,
2008) identify four regimes in the joint return series of the stock
market and the bond market by using HMM.

In our study, we construct a regime switching model that in-
cludes the commodity market index as well as the stock and bond
indices by applying HMM. The main reason for including the com-
modity market as an additional asset class is because commodities
are popular among practitioners for diversifying their portfolios. In
addition, there are a number of academic studies that treat com-
modities as a financial asset class. For instance, Gorton et al.
(2007) argue the commodity futures prices are proxies of commod-
ity spot prices. In addition, Gorton and Rouwenhorst (2006) assert
that the return of the commodity futures market is negatively cor-
related with the return of the equity market while positively corre-
lated with inflation. This model allows us to estimate the mean
vector and the covariance matrix of the joint return series de-
scribed above for each regime. In other words, the returns of the
three indices are stochastically emitted from one of many possible
distributions.
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Incorporating a regime switching model relaxes the assumption
of a single distribution of the Markowitz model. Instead of a fixed
value for the expected return and variance, a set of probabilities
representing the likelihood in each state is available. This probabi-
listic information converts the static mean–variance model into an
optimization problem under uncertainty, which is the case for a
market with unobservable multiple regimes. We take the stochas-
tic programming approach to formulate this optimization problem.
A reasonable extension of the mean–variance model is the n-peri-
od stochastic programs because they are theoretically equivalent
to static problems (Ziemba, 2009). Birge and Louveaux (1997)
and Ruszczyński and Shapiro (2003) provide a comprehensive
introduction to stochastic programming. We examine the effect
of asset allocation under a regime switching environment through
a simple example for a pension fund with a goal of achieving a cer-
tain level of financial wealth within a limited time span.

The organization of the paper is as follows. Section 2 introduces
HMM for analyzing market regimes, and the empirical results
along with the interpretation of the identified regimes are docu-
mented in Section 3. Section 4 includes a simple example of sto-
chastic optimization under the regime switching framework.
Then, we conduct rolling-horizon simulations to construct stochas-
tically optimized active portfolios and compare their performance
with several benchmarks in Sections 5, and 6 concludes.

2. Regime identification

While many studies on financial regime identification using
HMM focus heavily on the stock market, there is, to the best of
our knowledge, no empirical research specifically on the regimes
of the bond market. We suspect that a main reason is because there
are only a few recognizable crises in the bond market prior to the
European debt crisis of 2011. For the commodity market, Cheung
and Miu (2010) study the diversification benefit of commodities
by using Gorton’s equal-weighted portfolio (Gorton and Rouwen-
horst, 2006). They investigate commodity futures and find evi-
dence that the diversification benefits are robust over time and
across regimes. Moreover, they conclude that the high (low) return
environment for commodity futures is also associated with low
(high) volatility. However, their work incorporates neither the cor-
relation between the stock and bond markets nor the relationship
between the stock and commodity futures markets. Prajogo (2011)
applies HMM to the two-dimensional return series composed of
the S&P500 and the agricultural sector in the US stock market.
Although she does not use the information of correlation between
the two return series, the model provides the estimated covariance
matrix for each regime and therefore allows the investors to iden-
tify the characteristics of correlation in each regime.

2.1. Data

The choice of representative indices is based on important char-
acteristics of each market. For example, in the equities market, the
S&P500 index is widely used in academic research and investment
planning as a proxy for the market portfolio described in the cap-
ital asset pricing model (CAPM) of Sharpe (1964) and Lintner
(1965). As for the bond market, since one of the major characteris-
tics of bonds as a financial instrument is its stability, we gather the
yield-to-maturity on 10-year benchmark US government bonds.
Furthermore, we utilize the Goldman-Sachs Commodity Index for
the commodity market because of its dominant popularity in the
financial industry.2 The time span of data is from January 2, 1980

to June 11, 2012, which covers over 30 years of trading history
including the recent financial crisis.

2.2. Hidden Markov model

The construction of HMM requires decisions on two character-
istics of the model. The first one is the probability density function
of the observations. In this paper, we assume that the three return
series that each represents the stock, bond, and commodity mar-
kets, respectively, follow a multivariate normal distribution and
this allows us to easily include correlations among financial mar-
kets in our model. Student’s t distribution is known to be more ro-
bust to outliers for pattern recognition in gesture or speech using
HMM (Chatzis et al., 2009). The reason for using the normal distri-
bution instead of the Student’s t distribution in our study, however,
is because extreme tail events in financial markets cannot simply
be modeled as noise or errors; these extreme events are essential
for identifying market status such as the bubble period in the early
2000s or the market crash in 2008. In fact, it is known that the hid-
den Markov model with the normal distribution can address rela-
tively fat tailed distributions properly. See Mulvey and Zhao (2010,
Working Paper) for further discussion. The second property is the
structure of the underlying hidden states that emit observable
price series. We cannot directly observe market states and only
the index information for each market is available. In our study,
we assume that the number of hidden states is discrete and finite.

Fraser (2008) documents the basic framework of HMM. For ease
of understanding, we follow his notations and derivations on
HMM,

– S(t): A random variable of (unobservable) state at time t
– Y(t): A random variable of observation (in this case, three-

dimensional daily return series of stock, bond, and commodity
markets) at time t

– St1;t2 : A sequence of random variables of states from time t1 to t2

– Yt1;t2 : A sequence of random variables of observations from time
t1 to t2

– s(t): A realized (unobservable) state at time t
– y(t): A realized observation at time t
– st1 ;t2 : A sequence of realized states from time t1 to t2

– yt1;t2
: A sequence of realized observations from time t1 to t2

– H: A set of variables of HMM parameters to be estimated
– h: A set of estimated HMM parameters
– N: The dimension of observations (in this case, N = 3)
– t 2 {1, . . . ,T}, "s(t) 2 S = {1, . . . ,K}

We assume that the daily return series of the representative
indices for the three markets are the observations of the model
and the returns at time t depend on the regime at that time. We
can write our model by using Fraser’s notation as,

YðtÞjSðtÞ ¼ yðtÞjsðtÞ � NðlsðtÞ;RsðtÞÞ;

where ls(t) denotes the mean of the daily return series, Rs(t) is the
covariance matrix under state s(t). The assumption of normality of
returns and finite number of states allow the Baum–Welch algo-
rithm to estimate model parameters. The Baum–Welch algorithm
is an expectation–maximization (EM) algorithm for applications of
HMM.3 Given the initial set of parameters h and the realized series
of observations y1,T, the solution of this algorithm always converges
to a local maximum of the likelihood function Ph(y1,T). We use ran-
domly selected initial parameters and repeat the parameter estima-
tion for each seed. We generate initial parameters with the following
steps. First, calculate mean li and volatility ri for index i. Next, we

2 The data for all three markets are retrieved from Datastream where the identifiers
are TOTMKUS (RI), BMUS10Y (RI) and GSCIEXR, respectively. 3 Please see Fraser (2008) for a detailed mathematical derivation on the algorithm.
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