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a b s t r a c t

We consider in this paper the mean–variance formulation in multi-period portfolio selection under no-
shorting constraint. Recognizing the structure of a piecewise quadratic value function, we prove that
the optimal portfolio policy is piecewise linear with respect to the current wealth level, and derive the
semi-analytical expression of the piecewise quadratic value function. One prominent feature of our find-
ings is the identification of a deterministic time-varying threshold for the wealth process and its impli-
cations for market settings. We also generalize our results in the mean–variance formulation to utility
maximization with no-shorting constraint.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In 1952, Markowitz (1952) pioneered the investment science
and, in a broader sense, the modern finance, by considering the
static mean–variance portfolio selection formulation in a market
in which shorting is not allowed. Furthermore, he devised a
numerical scheme, the critical line algorithm, to solve the static
mean–variance model with no-shorting (see Markowitz (1952)
and Markowitz (1956)). On the other hand, considering markets
with shorting allowed leads to an unconstrained mean–variance
portfolio selection formulation and facilitates the derivation of
an analytical solution. More specifically, Merton (1972) applied
unconstrained convex quadratic programming technique to ob-
tain the analytical forms of the portfolio policy and the mean–
variance efficient frontier for unconstrained mean–variance port-
folio selection formulation. Twenty-eight years after the work by
Merton (1972), Li and Ng (2000) and Zhou and Li (2000) success-
fully extended the unconstrained mean–variance portfolio selec-
tion formulation to the multi-period setting and to the
continuous time setting, respectively. One prominent feature of
the dynamic mean–variance formulations is that the optimal
portfolio policy is always linear with respect to the current
wealth.

After the paper by Li and Ng (2000) was published, Professor
Markowitz wrote to one of the authors of this paper with a sug-
gestion to extend the results in Li and Ng (2000) to the dynamic
mean–variance formulation with a no-shorting constraint, and

offered a conjecture of a piece-wise quadratic value function
for such a situation (Markowitz, 2000). Stimulated by Prof.
Markowitz’s comments, Li et al. (2002) derived the optimal port-
folio policy for the continuous-time mean–variance model with
no-shorting using the duality method (Cvitanić and Karatzas,
1992; Xu and Shreve, 1992; Xu and Shreve, 1992), thus partially
proving Prof. Markowitz’s conjecture for the continuous-time
mean–variance model. However, it has taken us more than
10 years in exactly proving Prof. Markowitz’s conjecture for the
discrete-time mean–variance formulation with no-shorting and
in reporting our results in this paper. Only up to this stage, we
finally recognize some inherent difference between the continu-
ous-time and discrete-time formulations with a no-shorting con-
straint. In Li et al. (2002), the price processes of assets are
continuous Itô processes. We will reveal in this paper that, due
to the continuous adjustment of the portfolio policy, the wealth
process in continuous time under the optimal policy without
shorting behaves regularly below a deterministic time-varying
threshold, thus retaining the same structure of one-piece qua-
dratic value function as in the case with shorting allowed. On
the contrary, the discontinuity of the wealth process in the dis-
crete-time formulation leads to an actual situation with a piece-
wise quadratic value function, as we will discuss in this paper.
The existence of multiple pieces of quadratic value functions in-
deed poses a significant obstacle for us to achieve an analytical
solution.

The past 10 years have also witnessed some other extensions
of the mean–variance portfolio selection formulation with
different constraints, see for examples, Bielecki et al. (2005)
considered bankruptcy prohibition in continuous time using
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martingale approach; Zhu et al. (2004) investigated risk control
of bankruptcy in discrete time; Sun and Wang (2006) studied
a market consisting of a riskless asset and one risky portfolio un-
der constraints such as market incompleteness, no-shorting, or
partial information; Labbé and Heunis (2007) and Czichowsky
and Schweizer (2010) suggested dual formulations to character-
ize the mean–variance portfolio selection and mean–variance
hedging with general convex constraints respectively, without
giving corresponding analytical solution; and Fu et al. (2010)
integrated the borrowing rate constraints in the dynamic
mean–variance model. Please also refer to Chiu and Wong
(2012), Gulpinar and Rustem (2007), Li et al. (2010) and Wang
and Forsyth (2011) for other interesting developments in the lit-
erature. Recently, Czichowsky and Schweizer (2011) further con-
sidered general cone-constrained continuous-time mean–
variance portfolio selection with price processes being semimar-
tingales. They also found that the value function is piecewise
quadratic in such a case, which verifies that the feature of a
piecewise quadratic value function roots from the discontinuity
of price processes as we stated above in this paper. Different
from Czichowsky and Schweizer (2011), we further find in this
paper the fact that the discontinuity of the price processes
may not always lead to a piecewise quadratic value function.
Actually, as revealed in Section 3.3, under some types of
bounded requirements on assets’ return, the mean–variance for-
mulation may still have a one-piece quadratic value function in
discrete time. Such a finding gives us a much clearer view on the
influence of market setting. Moreover, we also derive semi-ana-
lytical solutions for the expected utility maximization problems
under no-shorting constraint.

The remaining of this paper is organized as follows. In Sec-
tion 2, we present the mean–variance formulation for multi-per-
iod portfolio selection under no-shorting constraint. We derive in
Section 3 the semi-analytical solution to the multi-period mean–
variance formulation without shorting, study the properties of the
solution, compare the results in this paper with the results in Li
et al. (2002) for continuous-time mean–variance formulation with
no-shorting, and investigate a particular market setting in which
the piecewise quadratic value function reduces to the one-piece
quadratic one. In Section 4, we extend our results to expected
utility maximization with no-shorting. We demonstrate the solu-

tion scheme developed in this paper and investigate the inherent
difference between the continuous time and discrete time via
illustrative examples in Section 5. Finally, we conclude our paper
in Section 6.

2. Mean–variance formulation for multi-period portfolio
selection without shorting

The capital market under consideration consists of n risky assets
with random rates of returns and one riskless asset with a deter-
ministic rate of return. An investor with an initial wealth x0 joins
the market at time 0 and allocates his wealth among the (n + 1) as-
sets. He can reallocate his wealth among the (n + 1) assets at the

beginning of each of the following (T � 1) consecutive time periods.
The deterministic rate of return of the riskless asset at time period t
is denoted by st > 0 and the rates of return of the risky assets at time
period t are denoted by a random vector et ¼ e1

t ; . . . ; en
t

� �0, where ei
t is

the random return for asset i at time period t. While assuming in this
paper that vectors et, t = 0, 1, . . . , T � 1, are statistically indepen-
dent, the only information we need to know for return et is its mean
vector, E½et � ¼ E e1

t

� �
; . . . ; E en

t

� �� �0 and its covariance, Cov (et), which
is assumed to be positive definite.

Let xt be the wealth of the investor at the beginning of the tth
time period, and ui

t ; i ¼ 1;2; . . . ;n, be the amount invested in the
ith risky asset at the beginning of the tth time period. It is assumed
that the short selling is not allowed, i.e., ut ¼ u1

t ;u
2
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for t = 0, 1, 2, . . . , T � 1. An investor of mean–variance type is seek-

ing the best feasible investment strategy, uH

t

� �T�1
t¼0 , such that the

variance of the terminal wealth, Var (xT), is minimized subject to
that the expected terminal wealth, E½xT �, is set at a preselected level
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where Pt ¼ P1
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the vector of excess rates of returns and 0 denotes the n-dimen-
sional zero vector. It is also reasonable to assume that E½Pt� is a
positive vector. The information set at the beginning of the t-th time
period is denoted as

F t ¼ rðx0; x1; � � � ; xtÞ ¼ rðF 0 _ rðP0;P1; . . . ;Pt�1;u0;u1; . . . ;ut�1ÞÞ;

where F 0 contains x0; st; E½et � and Cov (et), t = 1, . . . , T � 1. A feasi-
ble investment strategy at time period t, ut, is confined to be F t-
measurable.

Due to Cov (et) � 0, the second moment of st ; e0t
� �0 is positive

definite for all time periods. The following is then true for
t = 0, 1, . . . , T � 1:

which implies E PtP
0
t

� �
� 0 and

s2
t ð1� E P0t
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E�1 PtP

0
t
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E½Pt �Þ > 0 ð2Þ

for all t = 0, 1, . . . , T � 1. Varying parameter d in the problem formu-
lation (P(d)) yields the efficient frontier in the mean–variance space.

3. Optimal multi-period mean–variance policy with no-shorting

3.1. Main result

Consider an auxiliary problem of (P(d)) by introducing Lagrang-
ian multiplier 2l,

s2
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