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a b s t r a c t

We first study mean–variance efficient portfolios when there are no trading constraints and show that
optimal strategies perform poorly in bear markets. We then assume that investors use a stochastic bench-
mark (linked to the market) as a reference portfolio. We derive mean–variance efficient portfolios when
investors aim to achieve a given correlation (or a given dependence structure) with this benchmark. We
also provide upper bounds on Sharpe ratios and show how these bounds can be useful for fraud detection.
For example, it is shown that under some conditions it is not possible for investment funds to display a
negative correlation with the financial market and to have a positive Sharpe ratio. All the results are illus-
trated in a Black–Scholes market.
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1. Introduction

Markowitz (1952) and Roy (1952) were first in proposing a
quantitative approach to determine the optimal trade-off between
mean (return) and variance (risk). Their framework is nowadays
known as mean–variance analysis and has become very influential
as it combines algebraic simplicity with practical applicability.
Markowitz pursued the study of optimal investment portfolios
and his seminal works initiated a tremendous amount of research
heading in several directions, ranging from the study of other no-
tions for measuring risk, multi-period models (Cui et al., 2013;
Mossin, 1968), non-negative final wealth (Korn & Trautmann,
1995) and imperfect markets (Lim, 2004; Xia & Yan, 2006) to the
inclusion of ambiguity on the returns (Goldfarb & Iyengar, 2003)
or an uncertain horizon (Martellini & Urosevic̀, 2006). See also Leu-
ng, Wong, and Ng (2012) and Zhang, Zhang, and Xiao (2009). More
recently, several authors have been working on quadratic hedging
or mean–variance hedging, which corresponds to the problem of
approximating, with minimal mean squared error, a given payoff
by the final value of a self-financing trading strategy in a financial
market; see e.g., Lim (2006), Pham (2000) and Schweizer (1992,
2010), to cite only a few.

In an important contribution, Basak and Chabakauri (2010)
have fully characterized time-consistent dynamic mean–variance
optimal strategies. At any date prior to maturity, a time-consistent
optimal strategy is the best possible mean–variance efficient allo-

cation of wealth, assuming that an optimal mean variance strategy
is also selected at each later instant in time. Mean–variance
optimal strategies that are derived in a static setting1 violate
time-consistency in the sense that it may become optimal for a
mean–variance investor to deviate away from this optimal mean–
variance strategy during the investment horizon. However, these
optimal strategies (derived in the static setting) can still be justified
by assuming that the investor is pre-committed at time 0 and thus
executes the dynamic investment strategy that has been decided
at time t = 0. While time-consistency is a natural requirement, the
assumption of pre-commitment is compatible with an investment
practice in which a (retail) investor purchases a financial contract
(from a financial institution) and does not trade (herself) after-
wards.2 It also fits with the behavior of an investment manager
who revisits (optimizes) his portfolio periodically and sticks to his
strategy between two dates. In practice, managers and other inves-
tors may also have additional constraints when optimizing their
portfolio. One motivation for having constraints is that optimal
(unconstrained) strategies are typically long with the market index
and perform poorly in poor economic situations (Bernard, Boyle, &
Vanduffel, 2013). In this paper, we show that the static setting is well
suited to deal with a certain type of constraints that we motivate
economically. See also Wang and Forsyth (2011) for a numerical ap-
proach of mean variance efficiency in a time-consistent framework
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1 By a ‘‘static setting’’, we mean that the strategy is derived at the initial time t = 0
as the mean–variance efficient optimum with respect to the terminal wealth WT

without consideration for its properties at intermediate dates.
2 This is also consistent with the work of Goldstein, Johnson, and Sharpe (2008)

who propose a tool that allows consumers to specify their desired probability
distribution of terminal wealth at maturity.
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and numerical comparisons of pre-committed strategies and time-
consistent strategies.

Traditional mean–variance optimization consists in finding
the best pre-committed allocation of assets assuming a buy-
and-hold strategy or a constant-mix strategy (which requires a
dynamic rebalancing to ensure a constant percentage invested
in each asset). The question raises then how pre-committed
mean–variance efficient portfolios can be derived when all strat-
egies are allowed and available. Of course, allowing for more
trading strategies and thus more degrees of freedom will further
enhance optimality. The first contribution in this paper is to de-
rive optimal mean–variance strategies in this setting. We show
that the optimal portfolio consists of a short position in the sto-
chastic discount factor used for pricing derivatives and a long
position in cash. We are also able to compute the maximum
possible Sharpe ratio (Sharpe, 1967) of an optimal (mean–vari-
ance efficient) strategy. Bounds on the Sharpe ratio can be useful
to regulators or other market participants for fraud detection, i.e.
to assess whether the reported performance of a strategy is fea-
sible or not. Recall for example that the Sharpe ratio of Madoff’s
strategy lied far above the maximum Sharpe ratio for plausible
strategies (Bernard & Boyle, 2009).

In the second part of the paper we extend our study to the
case when there is additional information on the strategy, for
example on the way it interacts with the financial market or
any other benchmark asset as a source of background risk. Our
second contribution is then to derive tighter bounds on the
Sharpe ratio. This is useful for improved fraud detection or
abnormal performance reporting. For example, it is shown that
under some conditions it is not possible for investment funds
to display negative correlation with the financial market and to
have a positive Sharpe ratio.

Considering the interaction with a benchmark asset is also a
natural way to make mean–variance efficient strategies more resil-
ient against declining markets. Indeed, the mean–variance efficient
portfolios derived in the first part of the paper provide no protec-
tion against bear markets. In practice, many investors reward strat-
egies that offer protection or, more generally, that exhibit some
desired dependence with any other source of background risk
(which we refer to as a benchmark). Our third contribution is to de-
rive mean–variance optimal allocation schemes for investors who
exhibit state-dependent preferences in the sense that they care
about the first two moments of the strategy’s distribution and
additionally aim at obtaining a desired correlation or dependence
with a benchmark asset.

The rest of the paper is organized as follows. The optimal port-
folio problem and the assumptions on the financial market are pre-
sented in Section 2. Section 3 provides explicit expressions for
mean–variance efficient portfolios when there are no trading con-
straints as well as a first application to fraud detection. Sections 4
and 5 extend these preliminary results to the case when there are
constraints on the correlation (respectively the dependence) with a
benchmark and illustrate how these results are particularly useful
to improve fraud detection tools. Final remarks are presented in
Section 6.

2. Market setting

In this section, we provide our main assumptions and defini-
tions. Let ðX;F ;PÞ be a probability space that describes a financial
market. Assume that all market participants agree to use a (non-
negative) stochastic discount process (nt)t for pricing, i.e. the price
at time 0 for a strategy with terminal payoff XT (paid at time T > 0)
writes as

cðXTÞ ¼ E½nT XT �: ð1Þ

Note that the price of the unit cash-flow at time T is given by
cð1Þ ¼ E½nT � and we define the risk-free rate r such that
e�rT ¼ E½nT �. All payoffs XT are assumed to be square integrable
ensuring that c(XT) < +1. In particular var(nT) < +1. We remark that
this practice is usually motivated by assuming a frictionless and
arbitrage-free financial market where the usual definition of ab-
sence of arbitrage is employed.3 In particular, we do not take into ac-
count transaction costs (Pelsser & Vorst, 1996). When the market is
complete (all payoffs can be replicated) the stochastic discount fac-
tor nT is uniquely given, but in general an infinite number of choices
is possible. However, using a milder notion of arbitrage, Platen and
Heath (2009) argue that under some conditions, the stochastic dis-
count factor nT corresponds to the inverse of the so-called Growth
Optimal Portfolio (GOP)4 and also that the latter can be proxied by
a market index. This motivates why in the remainder of the paper
we refer to 1/nt as ‘‘the market index’’ and we denote it by S�t . The pric-
ing formula (1) can then be interpreted as the arithmetic average of
the possible outcomes all expressed in units of the market index.
Note how low values for the market index S�t correspond to high val-
ues for the discount factor nt. This is consistent with economic theory
in the sense that the states of a downturn are usually the most
expensive states to insure and therefore correspond to the states
x where the highest values for the discount factor nT(x) are
observed.

In the remainder of the paper, we consider an investor with a
fixed horizon T > 0 without intermediate consumption. We denote
by W0 > 0 her initial wealth. For convenience, we assume that all nt

(t > 0) are continuously distributed.

3. Unconstrained mean–variance optimal portfolios

3.1. Mean–variance efficiency

Roy (1952) and Markowitz (1952) propose a quantitative ap-
proach to find mean–variance efficient allocation among risky as-
sets assuming a buy-and-hold strategy. Their technique can also
be applied in the context of constant-mix strategies. In this section
we study mean–variance efficient portfolios when there are no
restrictions on the possible strategies. Finding optimal policies
turns out to be surprisingly simple. Indeed, let us first observe that
an optimal mean–variance efficient final payoff X�T must necessar-
ily be the cheapest possibility to generate a maximum mean for the
given variance level.5 Otherwise it is easy to contradict the optimal-
ity of this payoff. Indeed, if the optimum is not the cheapest strategy
then there is thus another strategy that is cheaper and also has max-
imum mean. The cost benefit can be invested in the risk free account
and one obtains a strategy that has a higher mean for the same var-
iance, which contradicts the mean–variance efficiency of the
strategy.

Constructing a cheapest strategy amounts to minimizing the
price (1). Observe that since std X�T

� �
and std(nT) are both fixed

and finite, minimizing the price (1) is equivalent to minimizing
the correlation6 between X�T and the discount factor nT. It is then a
standard result in statistics that this occurs if and only if the optimal

3 The no-free-lunch with vanishing risk (NFLVR) concept is the prevalent way to
describe absence of arbitrage. In their fundamental theorem of asset pricing, Delbaen
and Schachermayer (1994) essentially state that NFLVR is equivalent to the existence
of a stochastic discount factor (also called state-price density process).

4 The Growth Optimal Portfolio is a diversified strategy which ultimately outper-
forms all other strategies with probability one. In the literature it also appears as the
Kelly portfolio.

5 In other words, the optimal mean–variance portfolio must be cost-efficient in the
sense defined by Bernard, Boyle, et al. (2013).

6 corrðXT ; nT Þ ¼ E½nT XT ��E½nT �E½XT �
stdðnT Þ stdðXT Þ . As the moments of nT are given, it follows that for

given moments E½XT � and std(XT) minimizing E½nT XT � is equivalent to minimizing
correlation corr(XT,nT).
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