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a b s t r a c t

This paper introduces a general continuous-time mathematical framework for solution of dynamic
mean–variance control problems. We obtain theoretical results for two classes of functionals: the first
one depends on the whole trajectory of the controlled process and the second one is based on its termi-
nal-time value. These results enable the development of numerical methods for mean–variance problems
for a pre-determined risk-aversion coefficient. We apply them to study optimal trading strategies pur-
sued by fund managers in response to various types of compensation schemes. In particular, we examine
the effects of continuous monitoring and scheme’s symmetry on trading behavior and fund performance.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Markowitz’s seminal paper [29] introduced the mean–variance
criterion into portfolio optimization. Single-period problems,
which are mathematically tractable, have enjoyed popularity both
in the academia to model investor preferences and behavior (see,
e.g., Epstein [16], Ormiston and Schlee [30], Tobin [35]) and among
practitioners (see, e.g., Bodie et al. [12], Litterman [28]). An exten-
sion of this theory to continuous-time models proved to be difficult
due to fundamental problems introduced by the variance term. A
natural approach to continuous-time optimization is to use dy-
namic programming, which relies on markovianity of functionals.
The variance is, however, not markovian. There are three main
alternatives. The first involves the study of risk-sensitive function-
als (see, e.g., Bielecki et al. [10]), whose second order Taylor expan-
sion has the form of a mean–variance functional

EðHÞ � c
2

VarðHÞ; ð1Þ

where H is a random outcome of the investment and c is the risk-
aversion coefficient. The second alternative to dynamic program-
ming hinges on the use of martingale methods (see, e.g., Bielecki
et al. [9]). Although these methods can be used to obtain closed-
form solutions for a class of mean–variance problems, they turned
out to be unsuitable as a basis for efficient numerical algorithms
for general mean–variance problems.

A substantial progress in the theory for mean–variance func-
tionals was due to a third approach, closely related to the one we

employ in this paper. This approach, introduced by Li and Ng
[26] in a discrete-time setting, embeds the mean–variance prob-
lem into a class of auxiliary stochastic control problems that can
be solved by dynamic programming methods (see also Leippold
et al. [25]). An extension of this method to a continuous-time
framework is presented in Zhou and Li [38], and further employed
by Fu et al. [18] and Lim [27]. These papers put several constraints
on the optimization problem in order to obtain auxiliary control
problems in a linear-quadratic form. In particular, the random var-
iable H in the mean–variance functional (1) is assumed to be a lin-
ear function of the portfolio wealth process. Wang and Forsyth [36]
design numerical schemes for auxiliary linear-quadratic problems
formulated in [38] and construct an efficient frontier.

In this paper we present a mathematical framework for the
solution of general mean–variance stochastic control problems in
continuous time. This framework extends the continuous-time
theory of Zhou and Li [38] in two aspects. First, we allow the ran-
dom variable H in the mean–variance functional (1) to be specified
either as a continuous function of the portfolio wealth at a terminal
time (in general, the value of the controlled process) or as an inte-
gral of a continuous function of the portfolio wealth (in general, the
value of the controlled process) over time. A particular case when
H depends linearly on the portfolio wealth at terminal time is cov-
ered theoretically in Zhou and Li [38] and numerically in Wang and
Forsyth [36]. Second, we relax assumptions on the dynamics of the
controlled process to cover non-homogeneous degenerate diffu-
sions with Lipschitz coefficients of linear growth.

To the best of our knowledge, mean–variance optimization
problems based on the integral of a function of the value of the
controlled process over time have not been widely studied. A
closely related paper by Aivaliotis and Veretennikov [4] provides
theoretical approximation results via regularization; their solution
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leads to randomized strategies. In our paper, the optimization
problem is solved directly using the theory of viscosity solutions
to Hamilton–Jacobi–Bellman equations (see Fleming and Soner
[17], Pham [33]). In particular, our results enable computation of
(non-randomized) optimal strategies in a feedback form. The justi-
fication of their optimality – the verification theorem – requires
very restrictive assumptions (for the latest results see Gozzi et al.
[21]) that our control problem does not satisfy. We, therefore, re-
sort to numerically testing the optimality of strategies extracted
from numerical solutions of the HJB equations.

Our theoretical results are used to develop numerical algo-
rithms to maximize functional (1) for a given (pre-determined)
risk-aversion coefficient c. Wang and Forsyth [36] solve auxiliary
markovian optimization problems which are parametrised neither
by risk-aversion nor by the expectation of terminal value. Once the
optimal strategy is known, they can compute the risk-aversion, the
expectation and the variance. This proves to be sufficient if one
aims at graphing an efficient frontier. Our approach is different
as we endeavor to find an optimal strategy for a pre-determined
risk-aversion coefficient. We reformulate the mean–variance prob-
lem as a superposition of a static and a dynamic optimization prob-
lem, which is equivalent to solving a set of parametrized HJB
equations and maximizing the resulting value functions over a
compact interval valued parameter. We demonstrate that, for prac-
tical applications, our approach leads to an efficient numerical
algorithm.

Recently, Basak and Chabakauri [7,8] proposed another view on
mean–variance optimization. They introduced a notion of optimal-
ity in an intra-personal game theoretic sense. This has the advan-
tage of turning the optimization problem markovian. It should,
however, be noticed that strategies optimal in a game-theoretic
sense might not be optimal in a classical sense; and vice versa.

Theoretical results of this paper are applied to a study of a del-
egated portfolio management problem. It is a common practice in
the asset management industry to use mean–variance preferences
for choosing portfolios (see Bodie et al. [12] and Littermann [28]).
We assume that fund managers apply the same type of preferences
to their compensation and tend to follow trading strategies that
maximize their satisfaction from compensation. The mathematical
framework introduced in this paper allows us to study trading
strategies pursued by fund managers in response to various types
of compensation (incentive) schemes. We also analyze implica-
tions of complex schemes on distributional properties of the fund’s
wealth process. We consider symmetric (e.g., co-ownership) and
asymmetric (with a hurdle rate provision) schemes based on the
terminal wealth and on the continuously monitored wealth.

Incentives have been proven to be a significant factor influenc-
ing the behavior and performance of fund managers. Agarwal et al.
[2] examine, in an empirical study, the influence of incentives and
managerial discretion on the performance of hedge funds. They
find that managers with performance-related incentives – the
inclusion of hurdle rate provisions, or co-ownership – are associ-
ated with a better performance. We study numerically the implica-
tions of the above incentives on trading decisions of fund
managers. Managers with symmetric (co-ownership) compensa-
tion schemes show a superior performance over those remuner-
ated by schemes with hurdle-rate provisions: the resulting
Sharpe ratio of the terminal wealth is higher.

Incentives also influence the riskiness of trading strategies pur-
sued by fund managers. Elton et al. [15] find that managers with
asymmetric incentive contracts tend to follow riskier strategies
than those with symmetric compensation schemes.1 In particular,

they observe that asymmetric schemes encourage large variations
in the riskiness of portfolios over time: a poor performance at any
time triggers a sharp increase in the risk taking. Our numerical re-
sults show that such behavior is optimal for a fund manager with
mean–variance preferences.

Our numerical study contributes also to the discussion about
the frequency of portfolio monitoring (see, e.g., Agarwal et al.
[2] and Goetzmann et al. [20]). We analyze trading strategies
and portfolio performance when the manager’s compensation is
based on her performance sampled continuously over the whole
investment period. We observe a fall in Sharpe ratios for symmet-
ric and asymmetric schemes. This agrees with the empirical find-
ings of Agarwal et al. [2]. A continuous examination of the fund’s
wealth diminishes managerial discretion, which, according to [2],
impacts on the fund performance. One would, however, expect
that the closer scrutiny offered by such compensation schemes
lowers the riskiness of investment decisions. We demonstrate
that the opposite is true: the variance of excess returns
increases.

A classical but more challenging problem is the design of com-
pensation schemes that align preferences of an investor and a fund
manager. Existing literature offers results in the case of preferences
represented by utility functions (see, e.g., Carpenter [13] and Ou-
Yang [31]). Mean–variance optimality criterion has only been used
in a static (single-period) framework [6,14].

The outline of the remaining part of the paper is as follows.
Section 2 introduces a general mathematical framework for the
solution of mean–variance stochastic control problems and pre-
pares the ground for design of efficient numerical schemes. The
problem of managerial compensation in a continuous-time mar-
ket model alongside with various types of compensation schemes
and discussion of numerical methods used for computation of
optimal investment strategies is presented in Section 3. Analysis
of the trading strategies is performed in Section 4. Section 5 con-
cludes. In the Electronic Supplement, Section A introduces numer-
ical schemes and verifies their convergence, Section B collects
proofs.

2. Theoretical framework and results

In this section we present a general framework for the solution
of mean–variance dynamic optimization problems. Section 2.1
studies functionals depending on the value of controlled process
at the terminal time. In Section 2.2, these ideas are extended to
functionals based on the whole trajectory of the controlled process.
Our exposition is geared towards numerical computations, neces-
sary for practical applications.

The state is described by a d-dimensional non-homogeneous
stochastic differential equation (SDE) driven by a d1-dimensional
Wiener process (Wt)

dXt ¼ bðat ; t;XtÞdt þ rðat; t;XtÞdWt ; Xt0 ¼ x; ð2Þ

where b : A� ½0;1Þ � Rd ! Rd and r : A� ½0;1Þ � Rd ! Rd�d1 . The
process (at, t0 6 t 6 T) is from the class A of all progressively mea-
surable processes (with respect to the filtration generated by the
Wiener process (Wt)) with values in a compact set A � R‘. Its role
is to control the dynamics of the diffusion (Xt). Eq. (2) has a path-
wise unique (weak) solution if the following conditions are satisfied
(see, e.g., Gikhman and Skorokhod [19, Section Remark V.8.1] or
Fleming and Soner [17, Appendix D]):2

1 The fixed fee in the paper by Elton et al. [15] can be represented in our framework
as a symmetric compensation contract.

2 These conditions are superficial for the uniqueness of solutions. We will, however,
need them later in the study of the value function of the mean–variance optimization
problem.
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