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a b s t r a c t

Consider a random vector, and assume that a set of its moments information is known. Among all pos-
sible distributions obeying the given moments constraints, the envelope of the probability distribution
functions is introduced in this paper as distributional robust probability function. We show that such a
function is computable in the bi-variate case under some conditions. Connections to the existing results
in the literature and its applications in risk management are discussed as well.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the tasks in risk management is to manage what to do in
all scenarios, especially when worst comes to worst. With refer-
ence to a risk measure, a common way to describe ‘‘worst-case’’
is through distributional robustness, which refers to any distribu-
tion fitting some given moments, say m0;m1; . . . ;mn. Consequently,
the formulation below is often known as the moment bound
problem:

ðGPÞ sup
x�ðm0 ;...;mnÞ

E½wðxÞ� :¼ sup E½wðxÞ�

s:t: E½x� x��� �� x|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
# of x¼i

� ¼mi; i¼ 0; . . . ;n:

A few words about our notations are in order here. For x 2 R, ‘‘�’’
denotes the usual scalar multiplication and mi 2 R for all i, with
mi :¼ E½xi�. For x 2 Rd, ‘‘�’’ is the tensor multiplication (or matrix
multiplication in case d = 2) in the corresponding spaces and

mi 2 Rd� � � � � d
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{# of d¼i

. For example, if x = [x(1), x(2)]T 2 R2, then

x� x ¼ xxT ¼ ðxð1ÞÞ2 xð1Þxð2Þ

xð1Þxð2Þ ðxð2ÞÞ2

 !
2 R2�2, which is in the same space

where m2 resides. We will use the lower case letters (e.g. m) for
scalars and vectors, capital letters (e.g. M) for matrices, and fraktur
lower case letters m for ambiguous (implied) dimensions.

Scarf (1958) was the first to apply this worst-case analysis in
inventory management, where he took w(x) = min{x, k} for some
constant k and assumed the knowledge of the first two moments.
Lo (1987) and Grundy (1991) applied the similar concept for
option bounds. As a matter of fact, a sizeable amount of relevant
literature can be found (see e.g. Chen, He, & Zhang (2011), Cox
(1991), Cox, Lin, Tian, & Zuluaga (2008), Han, Li, Sun, & Sun
(2005), He, Zhang, & Zhang (2010), Jansen, Haezendonck, &
Goovaerts (1986), Liu & Li (2009), De Schepper & Heijnen (2007,
2010), De Vylder & Goovaerts (1982, 1983), De Vylder (1982),
Courtois & Denuit (2007), Zymler, Rustem, & Kuhn (2011),
Gulpinar & Rustem (2007), Huang, Zhu, Fabozzi, & Fukushima
(2011), Pena, Vera, & Zuluaga (2012)) With the recent computa-
tional developments of moment bounds, applications have been
introduced in different streams in financial engineering. For
example, Bertsimas and Popescu (2005) discussed the moment
bounds using semidefinite programming and its relevance in
probability theory (see also Bertsimas, Natarajan, & Teo, 2006;
Popescu, 2007) considered the mean–covariance solutions for sto-
chastic optimization; Chen et al. (2011) as well as Natarajan and
Sim (2010) discussed the moment bounds in the context of robust
portfolio selection; Wong and Zhang (2013) discussed the
moment bounds in the context of nonlinear risk management;
Lasserre, Preito-Rumeau, and Zervos (2006) discussed the pricing
of a class of exotic options with moments and SDP relaxation.
Regarding the theory underlying the computation of moment
bounds, we refer the interested reader to Popescu (2005) and
Lasserre (2008).

In particular, when we choose wðxÞ ¼ 1x2E for some event E in
the sample space X # Rd of x, (GP) is the worst-case probability,
which can be regarded as an implicit function of the moments,
given the event E:
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Fd;nðEÞ :¼ sup
ðRd3Þx�ðm0 ;...;mnÞ

P½x 2 E� ¼ sup
x�ðm0 ;...;mnÞ

E½1x2E�
 !

: ð1Þ

As we shall see later, choosing E ¼ fx 2 R : x 6 tg, F1;2ðEÞ is in
fact a probability distribution itself. In general, however, this is
not the case; although we always have 0 6 Fd;n 6 1, it may not sat-
isfy the additivity of joint countable union, namely, for any count-
able sequence of pairwise disjoint event E1;E2; . . ., we only have

Fd;n

[1
j

Ej

 !
6

X1
j¼1

Fd;nðEjÞ:

In other words, only subadditivity is guaranteed and the equality
holds only when the right hand side is attained by the same extre-
mal distribution of x for all Ej.

The possibility of deriving an analytical form or devising a sim-
ple computational procedure for Fd;n remains open for general n
and d. Throughout this paper, we adhere our discussion to the case
n = 2, unless specified otherwise. When d = 1 and n = 2, there are
nice distributional robust functions in analytical form. In our sub-
sequent discussion we will revisit them while applying the Value-
at-Risk in the context of portfolio selection. The formulation is in
line with El Ghaoui, Oks, and Oustry (2003), who discuss the
worst-case Value-at-Risk knowing the first two moments. To the
best of our knowledge, even when d = 2 there is no analytical form
or method for exact computation. The closest approximation is due
to Cox et al. (2008), who use sum-of-squares (SOS) polynomials to
approximate F2;2ðEÞ for nonnegative random variables, where
E ¼ fx 2 R2 : x 6 t for some t 2 R2

þg. In this paper, we propose a
computational method, in the realm of semidefinite programming
(SDP), to exactly compute F2;2ð�Þ. The methodology is based on the
characterization of copositive cones in Rd+1, where d 6 3, and some
results in Luo, Sturm, and Zhang (2004), which state that, given
either (i) x(1) 2 [0,1] or (ii) x(1) 2 R+, and x(2) 2 Rm, the nonnegativity
of a bi-quadratic function reduces to LMIs.

Before proceeding, let us formally summarize and highlight the
main contributions of this paper.

1. We introduce the moment bound of the probability as a
function given their moments, and formally introduce this
function as the distributional robust probability function.

2. In particular for the moment bound of two joint events, Cox
et al. (2008) developed an approximation approach through
sum-of-squares polynomials. In contrast, we provide an
methodology of the exact moment bound in the form of a
semidefinite program.

3. In association with risk management, we give three exam-
ples as applications of the distributional robust probability
functions. Our approach is in particular useful and powerful
when involving the bounded events, i.e. (l1 6 x(1)

6 u1,
l2 6 x(2)

6 u2).

The rest of this paper is organized as follows. In Section 2, we
review F1;2 and its connection to Value-at-Risk in the context of
portfolio selection. In Section 3, we derive the LMIs for computing
F2;2, where three events are taken into account as our ‘‘base cases’’:
E1 :¼ fx 2 R2 : xð1Þ 6 uð1Þ; xð2Þ 6 uð2Þg, E2 :¼ fx 2 R2 : lð1Þ 6 x 6 uð1Þ;
lð2Þ 6 x 6 uð2Þg and E3 :¼ fx 2 R2 : xð1Þ 6 uð1Þ;12 6 x 6 uð2Þg. Model
extensions are introduced in Section 4, followed by applications
in Section 5, and finally we conclude the paper in Section 7.

2. Distributional robust function with a single random variable

Take E1 ¼ fx 2 R : x 6 tg and let l1 and r2 be the mean and var-
iance respectively. F1;2ðE1Þ can be represented as a function of t
(Cantelli, 1910; Chebyshev, 1874):

F1;2ðE1Þ :¼ FðtÞ ¼
r2

ðl1�tÞ2þr2 ; t 6 l1;

1; t > l1:

(
ð2Þ

The above follows essentially from the Chebyshev–Cantelli inequal-
ity. An alternative proof can be found in Chen et al. (2011). It is also
well-known that this worse-case probability is achieved by a two-
point distribution of x. However, the story is completely different
when F(t) is regarded as a distribution function of some random var-
iable f, since it now has a smooth and continuous distribution (2),
which allows us to compute its moments analytically. In the next
paragraph, we review the portfolio selection based on worst-case
Value-at-Risk. We will use this F(t) in the proof of Lemma 1 to enable
a second-order cone programming formulation of the portfolio
selection problem. Meanwhile, it is interesting to note that the first
two moments of f and x are no longer the same: EðfÞ ¼ l1 � p

2 r
versus EðxÞ ¼ l1; and Eðf2Þ ¼ 1 versus Eðx2Þ ¼ l2

1 þ r2 (see
Appendix A). Recall that f follows a worst-case distribution and
represents an extreme event. This infinite variance of f actually
meets our intuition that an extreme event has a high ‘‘fluctuation’’.

In risk management, as extreme events are often associated
with the Value-at-Risk (VaR), let us apply f with this risk measure
and consider a portfolio selection problem (Castellacci & Siclari,
2003; Goh, Lim, Sim, & Zhang, 2012; Gotoh & Takeda, 2012;
Rossello, 2008). Suppose that h 2 Rp is the vector of investment re-
turn from p assets with a mean m 2 Rp and second moment matrix
M 2 Sp

þ. Let w 2 Rp be the portfolio weights and x = wTh the portfo-
lio return. Then EðxÞ ¼ wT m and Eðx2Þ ¼ wT Mw. Applying F1;2ðE1Þ in
the definition VaR, where we regard �wTh as the loss and choose
t = �a in E1, we have

VaR�ðwThÞ :¼ arg min
a
fF1;2ð�wTh P aÞ 6 �g;

where � 2 (0,1) is the level of confidence. The higher the a, the high-
er the risk. Therefore we would like to minimize the risk over the
set of admissible portfolio W (which typically incorporates the tar-
get of return, budget constraint and sometimes no short selling con-
straints) as follows:

min a
s:t: F1;2ð�wTh P aÞ ¼ Fð�aÞ 6 �

w 2 W;
ð3Þ

where � is given. Recall that Fð�aÞ ¼ supx�ðwT m;wT MwÞ Pðx P �aÞ. Be-
low we show that (3) is a convex optimization model and can be
solved efficiently.

Lemma 1 (See also Theorem 1 of (El Ghaoui et al., 2003)). Problem
(3) can be reformulated by second-order cone programming (SOCP).

Proof. The assertion follows from the observation that

Fð�aÞ 6 �() wT Mw

ðwT mþ aÞ2 þwT Mw
6 �() ð1� �ÞwT Mw

6 �ðwT mþ aÞ2 ()
wT mþ a
1��
� M

1
2w

 !
2 SOCðdþ 1Þ:

Note that we have implicitly assumed �wTm 6 a. Otherwise
F1;2ð�wTh P aÞ ¼ 1 > �, which contradicts the definition of VaR.
The proof in Lemma 1 can be regarded as an alternative approach
compared to that of El Ghaoui et al. (2003). The key difference is
that we work with the extremal distribution supx�ðl1 ;CÞ PðE1Þ ¼
FðtÞ, which makes the proof explicit. (Recall that in El Ghaoui
et al. (2003) the strong duality is discussed for supx�ðl1 ;CÞ PðE1Þ.)

Let us introduce the worst-case probability of the event
E2 :¼ fx 2 R : l 6 x 6 ug as:
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