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a b s t r a c t

For a given set of nodes in the plane the min-power centre is a point such that the cost of the star centred
at this point and spanning all nodes is minimised. The cost of the star is defined as the sum of the costs of
its nodes, where the cost of a node is an increasing function of the length of its longest incident edge. The
min-power centre problem provides a model for optimally locating a cluster-head amongst a set of radio
transmitters, however, the problem can also be formulated within a bicriteria location model involving
the 1-centre and a generalised Fermat-Weber point, making it suitable for a variety of facility location
problems. We use farthest point Voronoi diagrams and Delaunay triangulations to provide a complete
geometric description of the min-power centre of a finite set of nodes in the Euclidean plane when cost
is a quadratic function. This leads to a new linear-time algorithm for its construction when the convex
hull of the nodes is given. We also provide an upper bound for the performance of the centroid as an
approximation to the quadratic min-power centre. Finally, we briefly describe the relationship between
solutions under quadratic cost and solutions under more general cost functions.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important problems in the optimal design of
wireless ad hoc radio networks is that of power minimisation. This
is true during the physical design phase and when designing effi-
cient routing protocols (Montemanni, Leggieri, & Triki, 2008; Yuan
& Haugland, 2012; Zhu, Huang, Chen, & Wang, 2012). The most
appropriate fundamental model in both cases is the power efficient
range assignment problem, where a communication range ri is as-
signed to each transmitter xi such the resultant network is con-
nected and that total power

P
ra

i is minimised (see Althaus et al.,
2006). The exponent a is called the path loss exponent and most
commonly takes a value between 2 and 4, with a = 2 corresponding
to transmission in free-space. In this paper we study a type of
power efficient range assignment problem which allows for the
introduction of a single additional transmitter in the plane. We
show that this formulation is related to a continuous version of
the cent-dian problem (Colebrook & Sicilia, 2007) from location
analysis, and present a geometric method (based on farthest point
Voronoi diagrams) of constructing the optimal solution when a = 2.

The classical range assignment problem, which does not include
the option of introducing new transmitters, is a type of disk cover-
ing problem, where the centres of the disks are given nodes, the

radii (ri) of the disks are transmission ranges, and the directed
graph induced by the disks must satisfy a given connectivity con-
straint (for instance strong connectivity, biconnectivity, etc.) whilst
minimising

P
ra

i ; see Fig. 1(a), where the graph drawn is not nec-
essarily optimal. Observe that graphs that result from some assign-
ment of ranges are similar to unit-disk graphs, except that the disks
do not all have the same radius in our case. For any a > 1 the range
assignment problem is NP-hard, even in the case when only 1-con-
nectivity is required of the resultant network (Fuchs, 2008).

The idea of extending the classical range assignment problem
by allowing the introduction of additional transmitters is justified
because, during the design or maintenance of ad hoc radio net-
works, it is often pertinent to introduce relays or cluster-heads for
the processing of aggregated data and for the improved routing
efficiency that takes place in such hierarchical structures (see
Dhanaraj & Murthy, 2007; Paul & Matin, 2011; Shi, Jia, & Hai tao,
2009). Solving the range assignment problem whilst allowing for
the introduction of a bounded number of additional nodes any-
where in the plane constitutes a very general and highly applicable
geometric network problem, which has only been solved in certain
restricted settings (see for instance Brazil, Ras, & Thomas, 2012;
Brazil, Ras, & Thomas, 2010). Since the optimal locations of the
cluster-heads must be found, as well as the optimal assignment
of ranges on the complete set of nodes, this so called geometric
range assignment problem is at least as difficult as the classical
range assignment problem. Note that this problem is a type of con-
tinuous location problem, since the cluster-heads are free to be
located anywhere in the plane.
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This paper considers the problem of optimally locating a single
cluster-head amongst a given set of transmitters, where each
transmitter can send and receive data directly to and from the clus-
ter-head. Not only is this an interesting and applicable model in it
own right, but it is also a necessary first step in understanding the
local structure of optimal networks with multiple cluster-heads.
The graph induced by the assignment of ranges, in this case, con-
tains an undirected star with the cluster head as its centre and
the complete set of transmitters as its leaves; see for instance
Fig. 1(b), where the white node represents a cluster-head.

In more formal terms we denote the given finite set of transmit-
ters by X � R2 and the cluster-head by s 2 R2. The power of any
x 2 X is Px = ks � xka and the power of s is Ps = max{ks � xka:x 2 X},
where k � k is the Euclidean norm. The total power of the system
is denoted by PðsÞ ¼ Ps þ

P
x2XPx, and a min-power centre of X is a

point s⁄ which minimises P(s). The min-power problem, which is
the problem we address in this paper, seeks to locate a min-power
centre of a given set X in the plane. Minimising only Ps is clearly
equivalent to the 1-centre problem, i.e., the problem of finding
the centre of a minimum spanning circle for X. Minimising onlyP

Px is a generalised Fermat-Weber problem (Brimberg & Love,
1999), which becomes the classical Fermat-Weber problem when
a = 1 and the problem of constructing the centroid when a = 2.

A concept in facility location that is related to the min-power
problem is the computation of the centre-median (or cent-dian) of
a finite set of points (Colebrook & Sicilia, 2007); although, strictly
speaking, the cent-dian is only defined for a = 1. The cent-dian
problem requires one to find the Pareto-optimal solutions to the
vector function UðsÞ ¼ ðPs;

P
PxÞ, which is equivalent to finding

the optimal value of kPs þ ð1� kÞ
P

Px for every k 2 [0,1] (see Duin
& Volgenant, 2012; Fernandez, Nickel, Puerto, & Rodríguez-Chía,
2001). The min-power problem may be viewed as a type of cent-
dian problem, since it results by setting k = 1/2 and by allowing
other values of a besides a = 1. The cent-dian problem (with
a = 1) has been considered in the rectilinear plane (McGinnis &
White, 1978), and for a = 2 in the Euclidean plane (Ohsawa,
1999). Besides optimally locating a cluster-head amongst given
transmitters, the cent-dian also has another application in wireless
ad hoc networks, namely, finding a so called core node (Dvir & Se-
gal, 2010). Bicriteria models such as the cent-dian have been de-
scribed as seeking a balance between the antagonistic objectives
of efficiency (i.e., the minisum component) and equity (i.e., the
minimax component).

There are numerical methods, for instance the sub-gradient
method, that optimally locate a min-power centre to within any fi-
nite precision. However, structural results for the min-power cen-
tre problem, of the type described in this paper, are necessary for
optimally constructing more complex geometric range assignment
networks (which is the overarching goal of our research). This fact

is particularly manifest in the design of algorithmic pruning mod-
ules, where one develops strategies based on properties of locally
optimal structures for eliminating suboptimal network topologies
from the exponential set of possible topologies. The ultimate ben-
efits of good pruning modules has been demonstrated a number of
times for problems similar to the geometric range assignment
problem (Brazil et al., 2012; Brazil et al., 2010; Warme, Winter, &
Zachariasen, 2000).

In this paper we mostly focus on the quadratic case, a = 2, and
develop a complete geometric description of the solution in terms
of farthest point Voronoi diagrams and Delaunay triangulations. In
terms of cluster-head placement the a = 2 assumption means that
radio transmission takes place in free space, that is, in an ideal
medium with zero resistance. Path loss exponents close to 2 fre-
quently occur in real-world wireless radio network scenarios. This
is true for transmission in mediums of low resistance, and in medi-
ums of higher resistance when there is a degree of beam forming
(constructive interference) (Karl & Willig, 2007). The quadratic
case also applies to certain classical facility location problems,
including the location of emergency facilities such as hospitals
and fire stations (Fernandez et al., 2001; Ohsawa, 1999; Puerto,
Rodríguez-Chía, & Tamir, 2010). Furthermore, as demonstrated in
the final section, it is anticipated that theoretical developments
in the a = 2 case will lead to solutions and approximations for other
a > 1.

Single-facility location problems under very general norms and
convex cost functions have been studied by Durier (1995) and by
Durier and Michelot (1985, 1994). Some of these formulations in-
clude the min-power problem as a special case, however, a con-
structive method of producing the min-power centre does not
directly follow from their work. The principle contribution of the
research presented by Durier and Michelot in these papers involves
a description of the set of solutions to generalised Fermat-Weber
problems, which is a feasible and interesting endeavour when
the objective cost function is not strictly convex (as is the case with
the min-power problem). Nickel, Puerto, and Rodríguez-Chía
(2003) generalise this approach even further by allowing each gi-
ven point (facility) to be replaced by a set of points, where an opti-
mal centre is required to ‘‘serve’’ at least one point from each given
set. A stochastic version of generalised single-facility location
problems has also been studied (see Puerto & Rodríguez-Chía
(2011)).

In Section 2 we provide definitions and set up a Karush–Kuhn–
Tucker formulation of the min-power centre problem and its dual
for any a > 1. When a = 2 the geometric construction of the min-
power centre becomes tractable, allowing us to provide a
characterisation of the solution in terms of the farthest point
Voronoi diagram on X, and its dual, the farthest point Delaunay trian-
gulation. This characterisation is described in Section 3, where we

(a) (b)
Fig. 1. Examples of range assignment-induced graphs (or disk graphs). Circles centred at nodes represent the transmission distances of the respective nodes. Bidirected edges
are drawn without arrows.
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