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a b s t r a c t

The Delay Constrained Relay Node Placement Problem (DCRNPP) frequently arises in the Wireless Sensor
Network (WSN) design. In WSN, Sensor Nodes are placed across a target geographical region to detect
relevant signals. These signals are communicated to a central location, known as the Base Station, for fur-
ther processing. The DCRNPP aims to place the minimum number of additional Relay Nodes at a subset of
Candidate Relay Node locations in such a manner that signals from various Sensor Nodes can be commu-
nicated to the Base Station within a pre-specified delay bound. In this paper, we study the structure of the
projection polyhedron of the problem and develop valid inequalities in form of the node-cut inequalities.
We also derive conditions under which these inequalities are facet defining for the projection polyhe-
dron. We formulate a branch-and-cut algorithm, based upon the projection formulation, to solve DCRNPP
optimally. A Lagrangian relaxation based heuristic is used to generate a good initial solution for the prob-
lem that is used as an initial incumbent solution in the branch-and-cut approach. Computational results
are reported on several randomly generated instances to demonstrate the efficacy of the proposed
algorithm.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

A Wireless Sensor Network (WSN) consists of spatially distrib-
uted Sensor Nodes (SNs) to monitor physical or environmental con-
ditions, such as temperature, pressure, motion or pollutants. These
SNs transmit the sensed data through wireless communication to a
Base Station (BS) (Clare, Pottie, & Agre, 1999). SNs may be placed in-
side the event to be monitored or in the proximity of the same.
These features ensure a wide range of applications for WSN in varied
areas, e.g. health-care, military operations, and environmental mon-
itoring. WSN may be deployed in a vast geographical area (e.g.
oceans, forests) in order to detect critical events such as forest-fire,
tsunami, and floods. Using WSN, doctors can remotely monitor
physiological condition of their patients. WSNs can be an essential
part of military operations with their ability to perform key strategic
tasks, e.g. battlefield surveillance, reconnaissance of rival armies
etc. (cf. Akyildiz, Su, & Sankarasubramaniam, 2002).

Transmission radius of SNs (the range beyond which they can-
not transmit the signals) is typically several tens of meters. Due to
the limited transmission radius and the vastness of target geo-
graphical region, usually a multi-hop wireless communication,
using some additional Relay Nodes (RNs), is required to facilitate

end-to-end communication between SNs and the BS. As the cost
of RNs ranges from tens to hundreds of dollars, minimizing the
number of additional RNs without compromising the quality of sig-
nals is an important aspect of the WSN design.

Objective of the Delay-Constrained Relay Node Placement Prob-
lem (DCRNPP) is to design a multi-hop wireless mesh network
with minimum number of additional RNs in order to facilitate
wireless-communication between each of the SN and the BS. The
placement of RNs should ensure that the delay on the paths be-
tween BS and the SNs is restricted within a pre-specified delay
bound. DCRNPP studied in this paper is motivated by an important
class of WSN, where locations of the Candidate Relay Nodes (CRNs)
are known a priori. For example, in forest fire detection, a set of
sites where the CRNs can be placed may be known beforehand.
In brief, the key features of DCRNPP, studied in this paper, are
the following.

� The locations of SNs and CRNs are known beforehand.
� Transmission radius of the SN/RN allows only certain links to be

permitted in the graph.
� The objective is to obtain a sub-graph with minimum number of

CRNs selected that connects all SNs to BS.
� Placement of RNs must ensure that there exists at least one path

from each SN to the BS, for which the cumulative delay does not
exceed a pre-specified delay bound D.
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The version of DCRNPP, with relaxation of the delay constraint,
known as the Relay Node Placement Problem (RNPP) is broadly re-
lated to the Steiner tree problem (STP) in graphs (Gondran & Min-
oux, 1984). Classical STP is a NP-Hard problem and is extensively
studied by various researchers (Robins & Zelikovsky, 2005; Kar-
pensiki & Zelikovsky, 1993; Arora, 1998; Chopra & Rao, 1994a;
Chopra & Rao, 1994b).

The Prize collecting Steiner tree Problem (PCSP) (or the Node
weighted Steiner tree Problem, NSP), where node weights along
with edge weights are specified, can be considered as a general-
ization of both STP and RNPP (Duin & Volgenant, 1987; Segev,
1987). Approximation algorithms for PCSP are proposed by vari-
ous researchers (Klein & Ravi, 1995; Demaine & Hajiaghayi,
2009; Remy & Steger, 2009; Canuto, Resende, & Ribeiro, 2001;
Klau et al., 2004). Fischetti (1991) studied the facial structure of
a generalization of PCSP, known as the Steiner arborescence (or
directed Steiner tree) problem, and pointed out that the PCSP
can be transformed into it. Engevall, Lundgren, and Värbrand
(1998) proposed another ILP formulation for the PCSP, based on
the shortest spanning tree problem formulation, which was intro-
duced originally by Beasley (1989) for the Steiner tree problem. A
cutting plane algorithm for the PCSP based on generalized sub-
tour elimination constraints was proposed by Lucena and Re-
sende (2004).

The RNPP was studied as The Steiner Tree Problem with Min-
imum Number of Steiner Points and Bounded Edge Length (STP-
MSPBEL) by Lin and Xue (1999). They showed the problem to
be NP-complete and proposed a polynomial time 5-approxima-
tion algorithm for the problem. Cheng, Du, Wang, and Xu
(2008) studied the same problem and proposed a 3-approxima-
tion and a 2.5-approximation algorithm. Voss (1999) studied
the STP with hop constraints. The problem was shown to be
NP-hard and a minimal spanning tree based heuristic was pro-
posed to obtain a good feasible solution. Kim, Bang, and Choo
(2006) studied the delay and delay variation constrained multi-
casting STP. The problem is similar to the one studied by Voss,
with a delay constraint instead of the hop constraint, and a con-
straint on delay variation between two sources. They proposed a
polynomial time heuristic algorithm for the problem. Costa, Cor-
deau, and Laporte (2008) studied the STP with revenue, budget,
and hop constraints. They proposed a greedy heuristic for gener-
ating initial solution. The initial solution was improved by the de-
stroy and repair or the tabu search algorithm. Gouveia, Paias, and
Sharma (2008) studied rooted distance-constrained minimum
spanning tree problem, and proposed a path based formulation.
They presented a column generation scheme and a Lagrangian
relaxation based approach combined with sub-gradient optimiza-
tion procedure to solve the problem. Misra, Hong, Xue, and Tang
(2008) studied the constrained relay placement problem for con-
nectivity and survivability, and proposed an approximation algo-
rithm for the same. Their model took into account the
transmission radius as the edge length bound. Bhattacharya and
Kumar (2010) studied DCRNPP and showed the problem to be
NP-Hard. They presented a local search based greedy heuristic
to provide an approximate solution for the problem.

Another class of problem closely related to the RNPP is the Net-
work Design Problem with Relays (NDPR). The NDPR is defined on
an undirected graph G = (V,E,K), where V and E are the vertex and
edge sets, respectively. Set K = {o(k) 2 V,d(k) 2 V} is a set of commu-
nication pairs or commodities. Here, o(k) and d(k) denote the origin
and destination of kth commodity, respectively. A cost cij is associ-
ated with each edge (i, j) 2 E and a fixed cost fi, of installing a relay at
vertex i, is associated with each vertex i 2 V. The objective of NDPR
is to select a subset E0 # E and a subset V0 # V in such a way that
the total cost of network (edge cost and the relay installation cost)

is minimized, and there exists a path linking the origin o(k) and des-
tination d(k) for each commodity k 2 K in which the length between
any two consecutive nodes does not exceed a preset upper bound.
Cabral, Erkut, Laporte, and Patterson (2007) developed a lower
bound procedure and several heuristics for NDPR. They compared
these algorithms on several randomly generated test instances. Li,
Aneja, and Huo (2011) developed a Branch-and-Price algorithm
for directed version of NDPR, using an arc-path formulation. Konak
(2012) presented a new formulation for NDPR based on set cover-
ing constraints. Using the new formulation, he proposed a Genetic
Algorithm based heuristic to solve NDPR.

To the best of our knowledge, there is no algorithm in the liter-
ature that solves DCRNPP optimally. Apart from developing a
branch and cut based exact algorithm to solve DCRNPP, this paper
also examines the polyhedron structure of the problem and pro-
poses a projection formulation for DCRNPP. With the help of com-
putational experiments on several randomly generated test
instances, we demonstrate that the proposed algorithm based upon
projection formulation is able to optimally solve problem instances
of size up to 50 SNs and 200 CRNs, within reasonable CPU time.

The paper is organized as follows. In Section 2, we describe a
mathematical formulation for DCRNPP that involves an exponen-
tially large number of path variables. Since not all the columns in
this formulation are known explicitly, a column generation ap-
proach is presented in Section 3. The column generation approach
solves the LP relaxation of the path-based formulation to compute
a valid lower bound for the optimal solution. In Section 4, we de-
scribe a projection formulation for the problem, which involves
variables corresponding to CRNs only. We identify a set of valid
inequalities for the projection formulation, known as the node cut
inequalities. These inequalities are facet defining for the projection
polyhedron under certain mild conditions. In Section 5, we present
two separation algorithms to generate violated node cut inequali-
ties for the projection formulation. A heuristic to generate a good
feasible solution, which is used as an initial incumbent in the
branch and cut algorithm, is discussed in Section 6. In Section 7,
we discuss the implementation details for the branch and cut algo-
rithm that is used to solve DCRNPP optimally. Computational re-
sults on various randomly generated test instances are reported
in Section 8. In Section 9, we summarize this work and identify
possible areas for future research.

2. Problem formulation

In this section, we describe a path-based formulation for the
DCRNPP. The problem is defined on an undirected graph
G = (V,E). The SN set T = {1,2, . . . ,m}, CRN set R = {1,2, . . . ,n} and
the BS (node 0) constitute the node set of the graph i.e.
V = T [ R [ {0}. The edge set in the graph is defined as
E = {(i 2 V, j 2 V): lij 6 r}, where lij is the Euclidian distance, between
node i and node j, bounded by the transmission radius r. A
non-negative delay dij is associated with each edge (i, j) 2 E and
may be defined as some function of the Euclidean distances lij.
We define the set of neighbors for each node i 2 V, as
N i ¼ fj 2 V : ði; jÞ 2 Eg.

The set Pk is defined as set of all paths between BS and the SN
k 2 T. Set P(=

S
k2TPk) contains all paths between BS and all SNs.

The set Pk,D( # Pk) is defined as set of all paths between the BS
and SN k 2 T within the delay bound D. Set PD consists of all de-
lay-constrained paths between the BS and all SNs, i.e.
PD =

S
k2TPk,D.

Following variables are used in the problem-formulation:

� For each CRN j 2 R, binary variable yj indicates whether a RN is
placed at CRN location j or not.
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