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a b s t r a c t

In this paper, we extend the multiple traveling repairman problem by considering a limitation on the
total distance that a vehicle can travel; the resulting problem is called the multiple traveling repairmen
problem with distance constraints (MTRPD). In the MTRPD, a fleet of identical vehicles is dispatched to
serve a set of customers. Each vehicle that starts from and ends at the depot is not allowed to travel a
distance longer than a predetermined limit and each customer must be visited exactly once. The objective
is to minimize the total waiting time of all customers after the vehicles leave the depot. To optimally
solve the MTRPD, we propose a new exact branch-and-price-and-cut algorithm, where the column gen-
eration pricing subproblem is a resource-constrained elementary shortest-path problem with cumulative
costs. An ad hoc label-setting algorithm armed with bidirectional search strategy is developed to solve
the pricing subproblem. Computational results show the effectiveness of the proposed method. The opti-
mal solutions to 179 out of 180 test instances are reported in this paper. Our computational results serve
as benchmarks for future researchers on the problem.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The traveling repairman problem (TRP) has been extensively
studied by a large number of researchers (e.g., Afrati, Cosmada-
kis, Papadimitrious, Papageorgiou, & Papakostantinou (1986),
García, Jodrá, & Tejel (2002), and Salehipour, Sörensen, Goos, &
Bräysy (2011)); this problem is also termed the minimum la-
tency problem (Arora & Karakostas, 2003; Archer, Levin, & Wil-
liamson, 2008; Blum et al., 1994), the traveling deliveryman
problem (Fischetti, Laporte, & Martello, 1993; Méndez-Díaz,
Zabala, & Lucena, 2008; Minieka, 1989) and the cumulative trav-
eling salesman problem (Bianco, Mingozzi, & Ricciardelli, 1993).
The TRP is defined on a complete graph G = (V, E), where
V = {0,1, . . . ,n,n + 1} is the vertex set and E = {(i, j): i, j 2 V, i – j,
i – n + 1, j – 0} is the edge set. Vertices 0 and n + 1 represent
the exit from and the entrance to the depot, respectively. We
denote the vertices representing the set of n customers by
VC = {1, . . . ,n}. The repairman (henceforth referred to as vehicle)
is assumed to travel at a constant speed. Each edge (i, j) has a
non-negative length di,j and requires a non-negative traversing
time ti,j, which is symmetric, i.e., ti,j = tj,i, and satisfies the triangle

inequality rule. The objective of the TRP is to find a Hamiltonian
tour on G, starting from vertex 0 and ending at vertex n + 1,
which minimizes

P
i2VC

li, where li denotes the waiting time of
customer i after the vehicle leaves vertex 0. A direct generaliza-
tion of the TRP is the multiple traveling repairman problem
(MTRP) that considers K identical vehicles (Fakcharoenphol, Har-
relson, & Rao, 2007). Applications of the TRP and MTRP can be
found in routing pizza deliverymen, routing automated guided
vehicles through cells in a flexible manufacturing system or
scheduling machines to minimize mean flow time for jobs
(Fischetti et al., 1993).

This paper studies an extension of the MTRP by involving a dis-
tance constraint that the route length (or duration) of each vehicle
cannot exceed a predetermined limit L. This type of constraint usu-
ally stems from regulations on working hours for workers or arises
in the home delivery of perishable products. We call the resulting
problem the multiple traveling repairman problem with distance con-
straints (MTRPD) whose objective is to find K routes such that each
vertex is visited exactly once, the distance constraint is respected
and the total waiting time of all customers is minimized. Examples
of other vehicle routing models that incorporate the distance con-
straint can be found in Laporte, Nobert, and Desrochers (1985), Li,
Simchi-Levi, and Desrochers (1992), and Erera, Morales, and
Savelsbergh (2010).

The MTRP can be viewed as a variant of the multiple traveling
salesman problem (m-TSP) (Bektas, 2006; Svestka & Huckfeldt,
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1973). Although many researchers have studied the TRP, the lit-
erature on the MTRP is surprisingly limited. The only prior study
we can find in existing literature is Fakcharoenphol et al. (2007).
They presented a polynomial-time 8.497c-approximation algo-
rithm for the MTRP, where c denotes the best polynomial-time
approximation factor possible for the k minimum spanning tree
(k-MST) problem (Arora & Karakostas, 2006).

Apart from the MTRPD, there exist several other extensions of
the MTRP in the literature. Bennett and Gazis (1972) introduced
a school bus routing problem (SBRP) in which a fleet of school
buses is dispatched to take pupils from pick-up points to school.
Each bus has a fixed capacity and each pick-up point has a given
demand, represented by the number of pupils. The objective of
this problem is to minimize the weighted sum of the total bus
travel time and the total pupil travel time. Li and Fu (2002) de-
scribed a case study of routing school bus for Hong Kong kinder-
gartens. They formulated the problem as a multi-objective
combinatorial optimization problem with four types of objec-
tives, which are prioritized in the following order: (1) minimize
the total number of buses required; (2) minimize the total travel
time spent by all pupils; (3) minimize the total bus travel time;
and (4) balance the loads and travel times among all buses. For
an overview of the SBRP, we refer the reader to Park and Kim
(2010).

In the SBRP, it is obvious that the demand at each pick-up
point must be integer. When the vertex demand is allowed to
be a real number, the resulting problem is called the cumulative
vehicle routing problem (CumVRP) (Kara, Kara, & Yetis�, 2008;
Ngueveu, Prins, & Wolfler Calvo, 2010; Ribeiro & Laporte,
2012). The CumVRP is the same as the classical capacitated vehi-
cle routing problem (CVRP) (Toth & Vigo, 2002) except that the
cost of traversing an edge is the product of length and flow of
the edge. It has been shown that the MTRP is a special case of
the delivery formulation of the CumVRP; we refer the reader
to Kara et al. (2008) for details of the proof. The CumVRP can
be further regarded as a special case of the weighted vehicle
routing problem (WVRP) proposed by Zhang, Tang, Pan, and
Yuan (2010). The total cost to be minimized in the WVRP con-
sists of three components: (1) the fixed cost of dispatching a
vehicle; (2) the cost per unit travel distance; and (3) the con-
stant surcharge per unit weight per unit distance. Later, the
WVRP was extended to include multiple depots by Zhang, Tang,
and Fung (2011).

When the surcharge per unit weight per unit distance is a func-
tion of the vehicle weight, the WVRP is generalized to the vehicle
routing problem with toll-by-weight scheme (VRPTBW) (Shen,
Qin, & Lim, 2009; Zhang, Qin, Zhu, & Lim, 2012). To date, over
twenty-five Chinese provinces have implemented the toll-by-
weight schemes, all of which are monotonically increasing func-
tions of the vehicle weight. Denoting by the decision variable wi,j

the weight of the vehicle traversing edge (i, j) and assuming the
surcharge per unit distance is calculated based on a toll function
f(wi,j), the objective of the VRPTBW is to minimizeP

i2V

P
j2V di;jf ðwi;jÞ. Consider the case where the toll function has

the following form:

f ðwi;jÞ ¼
0 if wi;j ¼ 0
awi;j þ b if wi;j > 0

�

where a and b are non-negative parameters. If a = 0 and b = 1, then
VRPTBW reduces to the classical CVRP problem. If a = 1 and b = 0,
then VRPTBW reduces to the CumVRP. If a > 0 and b = 0, thenP

i2V

P
j2V di;jf ðwi;jÞ can be written as

P
i2V

P
j2V adi;jwi;j, which is

actually the third cost component of the WVRP (Zhang et al., 2010).
The workover rig routing problem (WRRP) introduced by Alo-

ise et al. (2006) is another variant of the MTRP. In the WRRP, a

set of onshore oil wells needs maintenance service from a fleet
of heterogeneous workover rigs. For each well, its production
loss equals the product of the production loss rate and the time
at which its required service is completed. The objective of this
problem is to find a route for each workover rig such that the
total production loss of the wells over a finite horizon is mini-
mized. In recent years, the WRRP has also been studied by sev-
eral other researchers, such as Pacheco, Ribeiro, and Mauri
(2010), Ribeiro, Laporte, and Mauri (2012), and Ribeiro, Desaul-
niers, and Desrosiers (2012).

After reviewing prior studies with regard to the MTRP and
its variants, we find that almost all relative articles except
Ribeiro, Desaulniers, et al. (2012) proposed near-optimal algo-
rithms, such as approximation algorithm (Fakcharoenphol
et al., 2007), heuristics (Bennett & Gazis, 1972; Li & Fu,
2002), scatter search algorithms (Zhang et al., 2010, 2011),
simulated annealing algorithm (Shen et al., 2009) and variable
neighborhood search (Aloise et al., 2006). In Ribeiro, Desaul-
niers, et al. (2012), the authors proposed a branch-and-price-
and-cut algorithm for the WRRP, where their column genera-
tion pricing subproblem was solved by a mono-directional la-
bel-setting algorithm.

In this paper, we provide an exact branch-and-price-and-
cut algorithm for the MTRPD. The pricing subproblem of
the MTRPD is called the resource-constrained elementary short-
est path problem with cumulative costs. Although label-setting
algorithms have been successfully applied to similar pricing
subproblems in several previous articles, e.g., Ribeiro, Desaul-
niers, et al. (2012) and Ioachim et al. (1998), our work is
the first attempt to develop bounded bidirectional label-set-
ting algorithm for solving it. To the best of our knowledge,
branch-and-price-and-cut method is the most successful exact
algorithm for the vehicle routing models (Baldacci, Christo-
fides, & Mingozzi, 2008; Fukasawa et al., 2006), such as
the vehicle routing problem with time windows (VRPTW)
(Desaulniers, Lessard, & Hadjar, 2008; Jepsen, Petersen, Spoo-
rendonk, & Pisinger, 2008), the split delivery VRPTW (Arch-
etti, Bouchard, & Desaulniers, 2011; Desaulniers, 2010), the
capacitated location-routing problem (Contardo, Cordeau, &
Gendron, 2011), the heterogeneous fleet vehicle routing prob-
lem (Pessoa, Uchoa, & de Aragão, 2009) and the pickup and
delivery problem with time windows (Ropke & Cordeau,
2009).

The remainder of the paper is structured as follows. Section 2
presents an arc-flow formulation and a set-covering formulation
for the MTRPD. This is followed in Section 3 with a description
of column generation, consisting of the pricing subproblem, the
label-setting algorithm for solving the pricing subproblem and
three acceleration strategies. Subsequently, we present other
main components of the branch-and-price-and-cut algorithm
in Section 4. Our experimental results are given in Section 5,
and we conclude our paper in Section 6 with some closing
remarks.

2. Mathematical formulation

The arc-flow formulation of the MTRPD uses two types of
decision variables: a binary decision variable xi,j,k that equals 1
if vehicle k directly travels from vertex i to vertex j, and 0 other-
wise; and a non-negative variable yi,k that represents the time at
which vehicle k arrives at vertex i. We denote by V+(i) = {j 2 Vj(i,
j) 2 E} and V�(i) = {j 2 Vj(j, i) 2 E} the immediate successors and
predecessors of vertex i in G. Letting F be the set of K vehicles
and M be a sufficiently large positive number, the arc-flow for-
mulation is given as:
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