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a b s t r a c t

The paper presents a generalized regression technique centered on a superquantile (also called condi-
tional value-at-risk) that is consistent with that coherent measure of risk and yields more conservatively
fitted curves than classical least-squares and quantile regression. In contrast to other generalized regres-
sion techniques that approximate conditional superquantiles by various combinations of conditional
quantiles, we directly and in perfect analog to classical regression obtain superquantile regression func-
tions as optimal solutions of certain error minimization problems. We show the existence and possible
uniqueness of regression functions, discuss the stability of regression functions under perturbations
and approximation of the underlying data, and propose an extension of the coefficient of determination
R-squared for assessing the goodness of fit. The paper presents two numerical methods for solving the
error minimization problems and illustrates the methodology in several numerical examples in the areas
of uncertainty quantification, reliability engineering, and financial risk management.

Published by Elsevier B.V.

1. Introduction

Analysts and decision makers are often concerned with a ran-
dom variable describing possible ‘cost,’ ‘loss,’ or ‘damage.’ The
interest may be focused on a single ‘system’ or could involve study
and comparison across a multitude of systems and designs. In
either case, it may be beneficial to attempt to approximate such
a loss random variable Y in terms of an n-dimensional explanatory
random vector X that is more accessible in some sense. This situa-
tion naturally leads to least-squares regression and related models
that estimate conditional expectations. While such models are ade-
quate in many situations, they fall short in contexts where a deci-
sion maker is risk averse, i.e., is more concerned about upper-tail
realizations of Y than average loss, and views errors asymmetri-
cally with underestimating losses being more detrimental than
overestimating. We focus on such contexts and therefore maintain
an orientation of Y that implies that high realizations are unfortu-
nate and low realizations are favorable. Of course, a parallel devel-
opment with an opposite orientation of the random variable Y,
focused on profits and gains, and concerns about overestimating
instead of underestimating is also possible but not pursued here.

Quantile regression (see Gilchrist, 2008; Koenker, 2005 and
references therein) accommodates risk-averseness and an
asymmetric view of errors by estimating conditional quantiles at a

certain probability level such as those in the tail of the conditional dis-
tribution of Y. While suitable in some contexts, quantile regression
only deals with the signs of the errors and therefore is overly ‘robust’
in the sense that large portions of a data set can change dramatically
without impacting the best-fitting regression function. A quantile cor-
responds to ‘value-at-risk’ (VaR) in financial terminology and relates
to ‘failure probability’ in engineering terms. Quantile regression in-
forms the decision maker about these quantities conditional on values
of theexplanatory random vector X. However, a quantile isnot a coher-
ent measure of risk in the sense of Artzner, Delbaen, Eber, and Heath
(1999) (see also Delbaen, 2002); it fails to be subadditive. Conse-
quently, a quantile of the sum of two random variables may exceed
the sum of the quantiles of each random variable at the same proba-
bility level, which runs counter to our understanding of what ‘risk’
should express. Moreover, quantiles cause computational challenges
when incorporated into decision optimization problems as objective
function, failure probability constraint, or chance constraint. The use
of quantiles and the closely related failure probabilities is therefore
problematic in risk-averse decision making; see (Artzner et al.,
1999; Krokhmal, Zabarankin, & Uryasev, 2011; Rockafellar & Royset,
2010; Rockafellar & Uryasev, 2000, 2013) for a detailed discussion.

A superquantile of a random variable, also called conditional va-
lue-at-risk, average value-at-risk, and expected shortfall,1 is an
‘average’ of certain quantiles as described further below. It is a
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coherent measure of risk well suited for risk-averse decision making
and optimization; see (Wang & Uryasev, 2007) for its application in
financial engineering, (Kalinchenko, Veremyev, Boginski, Jeffcoat, &
Uryasev, 2011) for military applications, and (Rockafellar & Royset,
2010) for use in reliability engineering. While this risk measure
has reached prominence in risk-averse optimization, there has been
much less work on regression techniques that are consistent in some
sense with it. In this paper, we derive such a superquantile regression
methodology, study its properties, and propose means to assess the
goodness-of-fit. The importance of such a regression methodology
becomes apparent by considering the following two situations.

Suppose that a loss is given by a random variable Y, but our pri-
mary concern is with the conditional loss given that an explanatory
random vector X takes on specific values. We aim to select these
values judiciously in an effort to minimize the conditional loss.
We denote by YðxÞ the conditional random variable Y given that
X ¼ x 2 Rn. Of course, ‘minimizing’ YðxÞ is not well-defined and a
standard approach is to minimize a risk measure of YðxÞ; see for
example (Krokhmal et al., 2011; Rockafellar & Uryasev, 2013). An
attractive choice is to use a superquantile measure of risk, which
as mentioned above is coherent and also computationally
approachable. While in some contexts a superquantile of YðxÞ
can be evaluated easily for any x 2 Rn, there are numerous situa-
tions, especially beyond the financial domain, where only a data
base of realizations of YðxÞ is available for various x. In the latter
situation, there is a need for building an approximating model,
based on the data, for the relevant superquantile of YðxÞ as a func-
tion of x. We refer to this as superquantile tracking. In comparison, if
the goal were to minimize the expectation of YðxÞ, then least-
squares regression would yield a model that approximates that
conditional expectation. Likewise, if the goal were to minimize a
quantile of YðxÞ, quantile regression would provide a model of
the conditional quantile. While these models are valuable for ana-
lysts and decision makers focused on the expectation and quantile
risk measures, they do not provide estimates of conditional super-
quantiles. In essence, the same need for estimating conditional
superquantiles arises in reliability engineering when the goal is
to determine a ‘design’ x with buffered failure probability of YðxÞ
being no larger than a given probability level, which corresponds
to a constraint on a superquantile of YðxÞ (Rockafellar & Royset,
2010).

Another situation arises when the explanatory random vector X
is beyond our direct control, but the dependence between the loss
random variable Y and X makes us hopeful that, for a carefully se-
lected regression function f : Rn ! R, the random variable f ðXÞmay
serve as a surrogate for Y. When the distribution of X is known, at
least approximately, and f has been determined, then the distribu-
tion of f ðXÞ is usually easily accessible. That distribution may then
serve as input to further analysis, simulation, and optimization in
place of the unknown distribution of Y. Such surrogate estimation
may arise in numerous contexts. ‘Factor models’ in financial invest-
ment applications (see for example Conner, 1995; Knight & Satc-
hell, 2005), where Y may be the loss associated with a particular
asset and X a vector describing a small number of macroeconomic
‘factors,’ is a result of surrogate estimation. ‘Uncertainty quantifi-
cation’ (see for example Eldred, Swiler, & Tang, 2011; Lee & Chen,
2009) considers the output of a system described by a random var-
iable Y, for example measuring damage, and estimates its moments
and distribution from observed realizations as well as knowledge
about the distribution of the input to the system characterized
by a random vector X. A main approach here centers on surrogate
estimation with f ðXÞ serving as an estimate of Y. In this situation,
an essential question is what criterion should be used for selecting
f. Clearly, one would like the error random variable Zf :¼ Y � f ðXÞ to
be small in some sense. However, minimizing the mean-squared
error of Zf would not reflect a greater concern about underestimat-

ing Y, i.e., underestimating losses, than overestimating. We may
want to assess the error of Zf in a manner that is ‘consistent’ with
our use of a superquantile as risk measure and weigh large levels of
underestimation more heavily than smaller levels.

In this paper, we develop a ‘generalized’ regression technique
that addresses the issue of superquantile tracking and surrogate
estimation. The technique is an extension of least-squares and
quantile regression, which center on expectations and quantiles,
respectively, to one that focuses on superquantiles.

The foundation of least-squares and quantile regression is the
fact that mean and quantiles minimize the expectation of certain
convex random functions. A natural extension to superquantile
regression could then possibly involve determining a random func-
tion that when minimizing its expectation, we obtain a superquan-
tile. However, such a random function does not exist (Chun,
Shapiro, & Uryasev, 2012; Gneiting, 2011), which has lead to stud-
ies of indirect approaches to superquantile tracking grounded in
quantile regression.

For a random variable with a continuous cumulative distribu-
tion function, a superquantile equals a conditional expectation of
the random variable given realizations no lower than the corre-
sponding quantile. Utilizing this fact, studies have developed ker-
nel-based estimators for the conditional probability density
functions, which are then integrated and inverted to obtain estima-
tors of conditional quantiles. An estimator of the conditional super-
quantile is then finally constructed by integrating the density
estimator over the interval above the quantile (Cai & Wang,
2008; Scaillet, 2005) or forming a sample average (Kato, 2012).
These studies also include asymptotic analysis of the resulting esti-
mators under a series of assumptions, including that the data orig-
inates from certain time series.

A superquantile of a random variable is defined in terms of an
integral of corresponding quantiles with respect to the probability
level. Since the integral is approximated by a weighted sum of
quantiles across different probability levels, an estimator of a con-
ditional superquantile emerges as the sum of conditional quantiles
obtained by quantile regression; see (Leorato, Peracchi, & Tanase,
2012; Peracchi & Tanase, 2008), which also show asymptotic re-
sults under a set of assumptions including the continuous differen-
tiability of the cumulative distribution function of the conditional
random variables. Similarly, (Chun et al., 2012) utilizes the integral
expression for a superquantile, but observes that a weighted sum
of quantiles is an optimal solution of a certain minimization prob-
lem; see (Rockafellar & Uryasev, 2013). Analogously to the situa-
tion in least-squares and quantile regression, an optimization
problem therefore yields an estimator of a conditional superquan-
tile. Though, in contrast to the case of least-squares and quantile
regression, the estimator is ‘biased’ due to the error induced by
replacing an integral by a finite sum. Under a linear model assump-
tion, (Chun et al., 2012) also constructs a conditional superquantile
estimator using an appropriately shifted least-squares regression
curve based on quantile estimates of residuals. In both cases,
asymptotic results are obtained for a homoscedastic linear regres-
sion model. Under the same model, (Trindade, Uryasev, Shapiro, &
Zrazhevsky, 2007) studies ‘constrained’ regression, where the error
random variable Zf ¼ Y � f ðXÞ is minimized in some sense, for
example in terms of least square or absolute deviation, subject to
a constraint that limits a superquantile of Zf . While this approach
does not lead to superquantile regression in the sense we derive
below, it highlights the need for alternative techniques for regres-
sion that incorporate superquantiles in some manner.

The need for moving beyond classical regression centered on
conditional expectations is therefore now well recognized and
has driven even further research towards estimating conditional
distribution function, i.e., ProbðYðxÞ 6 yÞ for all y 2 R, using non-
parametric kernel estimators (see for example Hall & Muller,
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