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a b s t r a c t

Forecasting critical fractiles of the lead time demand distribution is an important problem for operations
managers making newsvendor-type inventory decisions. In this paper, we propose a semi-parametric
approach to forecasting the critical fractile when demand is serially correlated. Starting from a user-
defined but potentially misspecified forecasting model, we use historical demand data to generate empir-
ical forecast errors of this model. These errors are then used to (1) parametrically correct for any bias in
the point forecast conditional on the recent demand history and (2) non-parametrically estimate the crit-
ical fractile of the demand distribution without imposing distributional assumptions. We present condi-
tions under which this semi-parametric approach provides a consistent estimate of the critical fractile
and evaluate its finite sample properties using simulation and real data for retail inventory planning.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Forecasting critical fractiles of the lead time demand (LTD) dis-
tribution is an important problem for operations managers making
newsvendor-type inventory decisions. It corresponds to finding a
cost-minimizing order quantity that optimally balances the costs
of understocking and the costs of overstocking in a single period.
The critical fractile solution has found numerous applications in
inventory theory (see review by Khouja (1999)), particularly in
the management of highly perishable or seasonable goods. It can
also be repeatedly applied when one takes a multi-period inven-
tory model with a myopic order up-to-policy (e.g., Graves, 1999;
Lee, So, & Tang, 2000), which is noted as an appropriate policy
for major retail chains (Smith & Agrawal, 2000). In this paper, we
consider the problem of forecasting critical fractiles when demand
is serially correlated.

The standard parametric approach to this problem starts with a
demand forecasting model and estimates the critical fractile as if
the chosen model were correctly specified and estimated (Silver,
Pyke, & Peterson, 1998). Specifically, this approach assumes that
(1) the fitted forecasting model produces unbiased LTD forecasts
and (2) the forecast error follows a Gaussian distribution. However,
in most practical situations, it is not possible to know the correct
demand generating process and satisfy these assumptions
(Chatfield, 1995). There are several reasons why this is the case.
First, managers will often have to produce simultaneous forecasts

for a very large number of items. For example, a typical US grocery
store carries anywhere between 15,000 and 60,000 SKUs (FMI,
2012). It is impractical to expect that one can specify the correct
model for each individual SKU. Instead, simple forecasting models,
such as exponential smoothing, are used in real-life scenarios,
without testing for their validity (Taylor, 2007). Second, the choice
of the demand forecasting model used for inventory management
might not be under the control of the operations/inventory plan-
ning department. Instead, it is often dictated by the sales and
marketing group, which may well provide biased (usually overop-
timistic) forecasts due to incentive misalignment (Goodwin, 1996;
Oliva & Watson, 2009). For instance, Manary and Willems (2008)
report that at Intel, the sales and marketing group, which is
responsible for feeding demand forecasts directly into the manu-
facturing resource planning system, consistently overestimates de-
mand across virtually all SKUs. Third, forecast errors may not
follow a Gaussian distribution (Bookbinder & Lordahl, 1989;
Fricker & Goodhart, 2000).

Under model uncertainty, the parametric approach inevitably
produces biased fractile estimates. It is important to understand
and reduce the bias as the biased fractile estimate leads to in-
creased inventory costs, as well as failure to meet required service
levels (Badinelli, 1990; Kim & Ryan, 2003). Moreover, it can ampli-
fy the increase in demand variability as one moves up a supply
chain, a phenomenon known as the bullwhip effect (Chen, Drezner,
Ryan, & Simchi-Levi, 2000).

When we need to be concerned by the possibility that the
forecasting model has been misspecified and/or the demand series
is non-Gaussian, empirical approaches are widely used in practice
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as a useful alternative. The non-parametric approaches (e.g.,
Bookbinder & Lordahl, 1989; Levi, Roundy, & Shmoys, 2007) are
established to negate the need to make any assumptions about
the demand model and to use solely the observed samples of de-
mand to forecast critical fractiles. However, they are limited to
independent demand processes and cannot be applied to serially
correlated demand processes. Alternatively, one can begin with a
user-specified forecasting model that captures autocorrelation in
the process and collect past LTD forecast errors of the chosen mod-
el. One then uses an empirical distribution of these forecast errors,
together with a point forecast for an upcoming period, to construct
a LTD distribution and thereby calculate a critical fractile non-
parametrically. This traditional empirical approach, which is often
used in practice (Manary & Willems, 2008) and cited in textbooks
(Cachon & Terwiesch, 2006), avoids the assumption that the fore-
casts are unbiased by checking whether the mean of past forecast
errors is zero. If the mean of errors is not equal to zero, then it is
used to correct for the bias in the most recent point forecast when
calculating a critical fractile. However, this empirical approach can
only deal with the unconditional forecast bias (such as the forecast
bias in unconditional mean) and is not valid under autocorrelated
demand. When the underlying demand is serially correlated, the
point forecasts we make are conditional on the recent demand his-
tory (e.g., when a first-order autoregressive model (AR(1)) is the
chosen forecasting model, the point forecasts are calculated condi-
tional on the most recent demand) and the bias in the point fore-
casts, if there is any, would also be conditional on the recent
demand history. Note that demand autocorrelation is indeed found
to be present in numerous practical settings, such as consumer
goods, fuel, food and machine tools (Chopra & Meindl, 2001; Erkip,
Hausman, & Nahmias, 1990; Nahimas, 1993) and failure to model
demand autocorrelation can have negative effect on the stockout
rate experienced by a firm (Charnes, Marmorstein, & Zinn, 1995).

In this paper, we present an approach that corrects for the con-
ditional forecast bias prior to using an empirical distribution of
past forecast errors to forecast critical fractiles. The proposed ap-
proach can be viewed as an extension of the traditional empirical
approach, which is suited to an autocorrelated demand process.
Using a sample of forecast errors of the chosen forecasting model,
we first estimate a parametric (linear) bias-adjusting regression
model, conditional on the recent demand history. We then use
the empirical residuals of this bias-adjusting regression model to
estimate the critical fractile non-parametrically. The framework
is semi-parametric as we specify the parametric bias-adjusting
model but use the empirical distribution of the model errors to cal-
culate the critical fractile.

Using asymptotic theory, we show that if the demand process
follows a stationary autoregressive (AR(p)) demand process, the
semi-parametric approach provides consistent estimates of the
critical fractile, independently of the user-specified forecasting
model, as long as it is within the autoregressive integrated
(ARI(~p; ~d)) class. This is because if the user-specified model is mis-
specified, we can correct for the conditional forecast bias in con-
structing critical fractiles using the parametric bias-adjusting
regression. No specific parametric assumptions about the forecast
error distribution are necessary. The proposed approach therefore
has practical relevance as it is applicable to forecasting models that
are commonly used in practice (e.g., the autoregressive, random
walk and independent demand models) and is robust against
incorrectly specified error distributions. We also demonstrate that
when the chosen forecasting model is correctly specified (i.e., the
conditional bias is equal to zero), the semi-parametric approach
collapses to the traditional empirical approach and the asymptotic
variance of the critical fractile estimation is reduced. A smaller
asymptotic variance is of practical importance as it implies lower
inventory costs for a given sample size. The benefit of robustness

against the unbiasedness of the forecasting model is traded off
against the loss in efficiency resulting from a higher asymptotic
variance.

To investigate the finite sample properties of the proposed
framework we report on a simulation study. We demonstrate that,
in comparison to the traditional parametric and empirical ap-
proaches, the proposed semi-parametric approach can significantly
reduce inventory costs by correcting for a conditional forecast bias
before estimating critical fractiles non-parametrically with empir-
ical forecast errors. The cost reduction is increasing in sample size,
lead time, and service level. Perhaps more importantly, our simu-
lation results indicate that the proposed approach is a good heuris-
tic for estimating critical fractiles under more general conditions
than those specified by our asymptotic analysis. In particular, we
show that the semi-parametric approach works well for the more
general autoregressive moving average (ARMA) demand processes
and under a broader class of user-specified forecasting models,
which includes autoregressive integrated moving average (ARIMA)
models. Finally, we illustrate the practical applicability of the pro-
posed approach using real data in retailing. We find that the semi-
parametric approach can significantly reduce inventory costs – by
up to 57% – and also meet the required service levels better, com-
pared to best-practice alternatives that fail to account for model
uncertainty.

This paper is organized as follows: Section 2 introduces the
critical fractile estimation problem when an arbitrary demand
forecasting model is used; In Section 3, we describe the semi-
parametric approach to estimating critical fractiles; Section 4
provides conditions for the asymptotic validity of the proposed ap-
proach; Section 5 provides numerical experiments to investigate
the small sample properties of our asymptotic results; Section 6
shows the practical applicability of the proposed approach in retail
inventory planning; and Section 7 concludes. All proofs are pro-
vided in the Supplementary material.

2. Estimating critical fractiles with an arbitrary demand
forecasting model

We study the critical fractile estimation problem with a fixed
replenishment lead time L where demand Yt is serially correlated.
Our main variable of interest is the lead time demand (LTD) in
period t;YL

t ¼
PL

s¼1Ytþs. We allow the LTD to be dependent on
the demand history Xt ¼ ðYt ;Yt�1; . . . ;Yt� _wþ1Þ0, where _w denotes
the time-invariate length of an observation window. The distribu-
tion of the LTD in period t, conditional on the demand history
Xt ¼ x, is then defined as Wtðy xj Þ ¼ PrðYL

t 6 y Xj t ¼ xÞ.
We assume that in period t, we first observe Yt and determine

the inventory target Qt . Note that the inventory target Qt needs
to be calculated conditional on Xt ¼ x because the underlying de-
mand process is serially correlated (i.e., Q t is state-dependent).
We also adopt the standard assumption of linear overage and
underage costs, which we denote by h and s, respectively. The
inventory target Q t is then given by the following well-known
Newsboy-type result (Cachon & Terwiesch, 2006):

Qt ¼min y : Wtðy xj ÞP Kf g; ð1Þ

where K ¼ s
sþh is the targeted service level (i.e., the likelihood of

being able to meet demand with inventory) that minimizes the ex-
pected cost by balancing the costs of understocking and the costs of
overstocking. (1) implies that the optimal inventory target Qt is gi-
ven by the Kth quantile of the conditional LTD distribution and this
is known as the critical fractile solution.

We note that the critical fractile solution can be repeatedly
applied when one takes a multi-period inventory model with a
myopic order-up-to policy, in which the inventory position is
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