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a b s t r a c t

Convergence speed and diversity of nondominated solutions are two important performance indica-
tors for Multi-Objective Evolutionary Algorithms (MOEAs). In this paper, we propose a Resource
Allocation (RA) model based on Game Theory to accelerate the convergence speed of MOEAs, and
a novel Double-Sphere Crowding Distance (DSCD) measure to improve the diversity of nondominat-
ed solutions. The mechanism of RA model is that the individuals in each group cooperate with each
other to get maximum benefits for their group, and then individuals in the same group compete for
private interests. The DSCD measure uses hyper-spheres consisting of nearest neighbors to estimate
the crowding degree. Experimental results on convergence speed and diversity of nondominated
solutions for benchmark problems and a real-world problem show the efficiency of these two pro-
posed techniques.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the real world, a lot of optimization problems may contain
several objectives to be optimized at the same time. These optimi-
zation problems are known as multi-objective optimization prob-
lems (MOPs). Evolutionary algorithms (EAs) have been widely
applied to solve MOPs in the past two decades. The Vector Evalu-
ated Genetic Algorithm (VEGA; Schaffer, 1984) was probably the
first multi-objective optimization evolutionary algorithm (MOEA).
Since the middle 1990s, there have been an increasing number of
MOEAs. The Niched Pareto Genetic Algorithm (NPGA; Horn,
Nafpliotis, & Goldberg, 1993), the Nondominated Sorting Genetic
Algorithm (NSGA; Srinivas & Deb, 1993) and the Strength Pareto
Evolutionary Algorithm (SPEA; Zitzler & Thiele, 1999) were repre-
sentative algorithms. In the past decade, many efficient MOEAs
were presented. The typical representatives of these algorithms
were the Pareto Archived Evolution Strategy (PAES; Knowles &
Corne, 2000), the Pareto Envelope based Selection Algorithm
(PESA; Corne, Knowles, & Oates, 2000), the Multi-Objective Messy
Genetic Algorithm (MOMGA; Van Veldhuizen & Lamont, 2000), the
Micro Genetic Algorithm (MicroGA; Coello Coello & Pulido, 2001),

the improved version of NSGA (NSGA-II) with a more efficient
nondominated sorting method, elitism, and a crowded comparison
operator without specifying any additional parameters for
diversity maintaining (Deb, Pratap, Agarwal, & Meyarivan, 2002),
the improved version of SPEA (SPEA2) with a revised fitness
assignment strategy, a nearest neighbor density estimation tech-
nique, and an enhanced archive truncation method (Zitzler,
Laumanns, & Thiele, 2002), the Multi-objective Particle Swarm
Optimization (MOPSO; Coello Coello, Pulido, & Lechuga, 2004),
the Multi-objective Evolutionary Algorithm Based on Decomposi-
tion (MOEA/D; Zhang & Li, 2007), the Regularity Model Based
Multi-Objective Estimation of Distribution Algorithm (RM-MEDA;
Zhang, Zhou, & Jin, 2008), the Evolutionary Multi-Objective
Immune algorithm (EMOIA; Tan, Goh, Mamun, & Ei, 2008), and
the Fast Hypervolume-Based Many-Objective Optimization (HypE;
Bader & Zitzler, 2011).

Since MOEAs generally need a large number of iterations to
achieve convergence, the processing takes lots of computations.
Therefore, how to accelerate the convergence speed is of great
importance. In this study, we introduce a Resource Allocation
(RA) model based on Game Theory for MOEAs.

In addition, simultaneously optimization of multiple objectives
is quite different from single objective optimization in that there
are a group of nondominated solutions in multi-objective optimi-
zation. Each nondonimated solution on Pareto front has its unique
physical significance. Generally speaking, it is essential to maintain
diversity of the final solution sets. To achieve this purpose, some
methods are applied in different MOEAs. The nondominated solu-
tions pruning method based on crowding distance (Deb, Pratap
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et al., 2002) has been widely used. In our paper, an improved
crowding distance based on Double-Sphere is proposed to well re-
flect the bending degree and spatial information of nondominated
individuals.

These two novel strategies are then applied to the Nondomi-
nated Neighbor Immune Algorithm (NNIA), which was proposed
by Gong, Jiao, Du, and Bo (2008). We compare the improved
NNIA with NSGA-II, NNIA and MOEA/D in terms of convergence
speed and diversity to show the effectiveness of these two
strategies.

The remainder of this paper is organized as follows: Section 2
briefly describes related background. The RA model and the
Double-Sphere Crowding Distance (DSCD) measure and their
application in NNIA are presented in Section 3. In Section 4, twelve
benchmark MOPs and a real-world problem are used to evaluate
the performance of these two proposed strategies. In Section 5,
concluding remarks are presented.

2. Related backgrounds

2.1. Multi-objective optimization

Multi-objective optimization (Coello Coello, Van Veldhuizen, &
Lamont, 2002; Deb, 2001) seeks to optimize a vector of functions,

FðxÞ ¼ ðf1ðxÞ; . . . ; fmðxÞÞ
Subject to x ¼ ðx1; x2; � � � ; xnÞ 2 X

ð1Þ

where X is the decision space, F:X ? Rm is the map of decision
space to m real valued objectives space.

Take a maximization problem into consideration. It is said that
a vector xA 2X dominates another vector xB 2X (written as xA -
� xB) if and only if

8i¼ 1;2; . . . ;m f iðxAÞP fiðxBÞ^9j¼ 1;2; . . . ;m f iðxAÞ> fiðxBÞ ð2Þ

It is said that a vector of decision valuables x⁄ 2X is a Pareto-opti-
mal solution or nondonimated solution if there does not exist an-
other x 2X such thatx � x⁄.

Therefore, the Pareto-optimal set is defined as Eq. (3).

P� ¼ fx� 2 Xj:9x 2 X; x � x�g ð3Þ

Then the Pareto-optimal set is the set of all Pareto-optimal
solutions. The corresponding image of them under the objective
function space is called the Pareto-optimal front, which can be
described as follows:

PF� ¼ fFðx�Þ ¼ ðf1ðx�Þ; f2ðx�Þ; . . . ; fmðx�ÞÞjx� 2 P�g ð4Þ

The purpose of a MOEA is to find a set of Pareto-optimal solutions
approximate the true Pareto-optimal front.

As is presented in Section 1, many MOEAs have emerged
since the middle 1990s. The NNIA, one of the multi-objective
optimization algorithms based on Artificial Immune Systems
(Chen, Lin, & Ji, 2010; Coello Coello & Cortes, 2005; Hu, 2010;
Tan et al., 2008), was presented by us in Gong et al. (2008). In
NNIA, we store nondominated individuals found so far in an
external population, the dominant population. Only partial
less-crowded nondominated individuals, active antibodies, are
selected to do proportional cloning, recombination, and hyper-
mutation. Furthermore, the population storing clones is called
the clone population. The dominant population, active popula-
tion, and clone population at time t are presented by time-
dependent variable matrices Dt, At and Ct, respectively. The
details of NNIA are described as follows.

Nondominated Neighbor Immune Algorithm

Input: Gmax (maximum number of generations)
nD (maximum size of dominant population)
nA (maximum size of active population)
nC (size of clone population)

Output: DGmaxþ1 (final approximate Pareto-optimal set)

Step 1: Initialization: Generate an initial antibody population B0

with size nD. Create the initial D0 = /, A0 = /, and C0 = /. Set t = 0.
Step 2: Update Dominant Population: Identify dominant anti-
bodies in Bt. Copy all the dominant antibodies to form the tem-
porary dominant population (denoted by DTt+1). If the size of
DTt+1 is not greater than nD, let Dt+1 = DTt+1. Otherwise, calculate
the crowding distance values of all individuals in DTt+1, sort
them in descending order of crowding distance, and choose
the first nD individuals to form Dt+1.
Step 3: Termination: If t > Gmax is satisfied, export Dt+1 as the
output of the algorithm, Stop; Otherwise, t = t + 1.
Step 4: Nondominated Neighbor-Based Selection: If the size of
Dt is not greater than nA, let At = Dt. Otherwise, calculate the
crowding distance values of all individuals in Dt, sort them in
descending order of crowding distance, and choose the first nA

individuals to form At.
Step 5: Proportional Cloning: Get the clone population Ct by
applying proportional cloning to At.
Step 6: Recombination and Hypermutation: Perform recombi-
nation and hypermutation on Ct and set C0t to the resulting
population.
Step 7: Get the antibody population Bt by combining the C0t and
Dt; go to Step 2.

The experimental results in Gong et al. (2008) showed that
NNIA was an efficient and effective immune-inspired multi-objec-
tive optimization algorithm. However, this algorithm might be
trapped in local optimal front if current isolated nondominated
antibodies selected for proportional cloning were few. In addition,
crowding distance-based one-off deletion technique used in NNIA
could not supply a perfect distribution of the final approximate
solutions.

2.2. Related work

For the limitation of computations, the study on convergence
speed of a MOEA is of great significance. There are many strategies
in MOEAs to make the population evolve fast. Strength-Pareto
strategy with a revised fitness assignment is adopted in SPEA2 to
preserve the elite individuals. In NSGA-II, the author selects the
best individuals in population according to nondominated sorting
strategy and crowding distance to make the population achieve
convergence. A decomposition method is applied in MOEA/D
which is benefit to help the population converge fast. Elitism is
used in NNIA according to nondominated sorting strategy and
crowding distance. The convergence speed of these algorithms is
always in connection with resource allocation in the iteration pro-
cess. Game theory has obtained remarkable effects in dealing with
limited resources allocation. Xu, Krzyzak, and Oja (1993) proposed
Rival Penalized Competitive Learning (RPCL) for clustering analy-
sis, RBF net, and curve detection, which had achieved good results.
Fan, Zhen, and Xie (2003) proposed a Suppressed fuzzy c-means
clustering algorithm, in which a suppressed learning strategy
was adopted. In this paper we introduce a RA model for accelerat-
ing convergence speed of MOEAs.
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