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a b s t r a c t

This paper considers the use of scenarios to treat uncertain attribute evaluations in the outranking meth-
ods. The scenario-based approach allows the decision maker to think deterministically about the problem
by attaching causal links to a small number of potential outcomes, instead of using probability distribu-
tions. The scenario approach can be expressed as a simplified version of the comprehensive but practi-
cally complex ‘‘distributive’’ outranking method of d’Avignon and Vincke. Using a scenario approach
has distinct practical advantages, but also presents the inherent danger that meaningful information is
ignored. The extent of this danger is assessed using a simulation experiment, where it is found to be
of a magnitude that is non-trivial but still potentially acceptable for certain decision contexts.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many decisions must be made in conditions where the conse-
quences of some actions are unknown because they depend on fu-
ture events. This is sometimes termed ‘‘external uncertainty’’ (e.g.
Stewart, 2005, chap. 11) because it relates to uncertainty about
environmental conditions lying beyond the control of the decision
maker. Particularly in the realm of strategic decision problems,
these uncertainties can be complex and interrelated, with the re-
sult that the elicitation of precise mathematical measures such as
probabilities become operationally difficult for decision makers
to comprehend, and for facilitators to validate. In light of these
obstacles, an alternative approach is to construct a number of nar-
ratives that describe possible ways in which the future might un-
fold. Each of these possible futures is conventionally termed a
‘scenario’ and the use of scenarios for strategic planning known
as ‘scenario planning’ (e.g. Van der Heijden, 1996; Wack, 1985a,
1985b).

Advocates of scenario planning often prefer to avoid formal
quantitative modeling (e.g. Schoemaker, 1995; Van der Heijden,
1996) and use informed but informal judgment – some examples
can be found in Enserink (2000), Wollenberg, Edmunds, and Buck
(2000), Cairns, Wright, Bradfield, van der Heijden, and Burt
(2004). Nevertheless, efforts have been made to integrate decision
analysis with the use of scenarios, as discussed for example in
Goodwin and Wright (2009, chap.16) and Stewart (2005, chap.
11). The main objective of a scenario-based decision model is to
use the philosophy of multi-criteria decision analysis (MCDA) to

evaluate and compare the performances of alternatives in each sce-
nario – given a decision problem, the approach considers that
problem separately in each scenario before (possibly but not nec-
essarily explicitly) combining this information to arrive at a final
decision.

The general integration of scenario planning and MCDA has
been thoroughly described in a number of places (e.g. Durbach &
Stewart, 2012; Stewart, 2005, chap. 11; Stewart, French, & Rios,
2013), and a number of practical applications (using value function
methods) reported (Montibeller, Gummer, & Tumidei, 2006; Ram,
Montibeller, & Morton, 2010; van der Pas, Walker, Marchau, Van
Wee, & Agusdinata, 2010). The current paper is narrower in scope
and focuses only on the use of scenarios in the outranking meth-
ods, with the specific aims of:

1. Providing a formal description of the scenario-based outranking
method;

2. Showing how the scenario-based outranking model provides a
natural simplification to the comprehensive but practically
complex ‘‘distributive’’ outranking method of d’Avignon and
Vincke (1988);

3. Assessing the differences between results obtained using sce-
nario-based and distributive methods, using a simulation
experiment.

A primary motivation for this paper is the simplification of the
distributive outranking method of d’Avignon and Vincke, which
despite its theoretically appeal has not been widely used (indeed
I could find no reported applications in the literature). By ignoring
some aspects of uncertainty while assigning to others additional
qualitative information, the scenario-based model avoids using
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measures that are potentially difficult for decision makers to inter-
pret and work with (for example, stochastic indices of preference).
Of course ignoring information brings with it the risk of selecting
demonstrably worse alternatives, the extent of which is evaluated
using a simulation experiment.

The remainder of the paper is structured as follows. In Section 2
notation is introduced and uncertainty modeling in the outranking
methods reviewed. Section 3 describes the scenario-based outran-
king method and its relationship to the distributive method in
d’Avignon and Vincke (1988). Section 4 clarifies the relationship
with a brief numerical example. Sections 5 and 6 describe the sim-
ulation study and results respectively. A final section concludes the
paper.

2. Outranking under uncertainty

Consider a decision problem consisting of I alternatives denoted
by ai, i 2 {1, . . . , I}, each evaluated on J criteria denoted by cj,
j 2 {1, . . . , J}. Let Zij be the evaluation of ai in terms of criterion cj,
according to some suitable performance measure. Our concern is
with decision making situations in which the values of Zij for each
i are not known with certainty for all j, but are viewed as random
variables with an associated multivariate probability distribution
function Fi and probability density function fi. Let Fij and fij denote
the corresponding marginal cumulative distribution function and
probability density function for criterion cj if alternative ai is
selected.

Although Fij and fij will usually be continuous functions, the
range of possible outcomes can be approximated to arbitrary accu-
racy by a large number of discrete ‘‘states’’ or realizations of the
associated random variable. Let zij,m denote realization rm of Zij,
with m 2 {1, . . . , Mij}. To explicitly differentiate between realiza-
tions/states and scenarios, performance in a particular scenario
sm is denoted by zðmÞij , with m 2 {1, . . . , S}. The set of constructed
scenarios is denoted S.

2.1. Methods using pairwise comparisons of probability distributions

Several outranking methods use stochastic dominance concepts
to treat uncertain attribute evaluations. These categorize instances
in which a pairwise comparison of the associated probability dis-
tributions is sufficient to confirm that one alternative is preferred
to another (in the sense of maximizing expected utility) provided
that certain constraints on the underlying utility function are sat-
isfied. Well-known results (Bawa, 1975) show that the first-, sec-
ond-, and third-degree stochastic dominance of ai over ak on cj

implies that ai is preferred for, respectively: any increasing utility
function on cj; any concave increasing utility function on cj; and
any decreasingly risk averse, concave, increasing utility function
on cj. Similar conditions have been provided for convex utility
functions (Goovaerts, de Vylder, & Haezendonck, 1984).

Zaras and Martel (1994) and Zaras (2001) use a simple
weighted aggregation of indicator variables fj(ai,ak) which equal
1 if ai stochastically dominates ak on criterion cj and are otherwise
zero. This results in a concordance index as for ELECTRE I. Martel,
d’Avignon, and Couillard (1986) and Azondékon and Martel
(1999) construct a preference index fj(ai,ak) as a product of three
functions each scaled between 0 and 1 that cause fj(ai,ak) to de-
crease as dominance weakens from first- to third-degree. A similar
threshold-based method is provided in Nowak (2004). Dominance-
based methods have also been extended to make use of fuzzy num-
bers, and possibilistic and evidentiary evaluations (Amor, Jabeur, &
Martel, 2007; Boujelben, Smet, Frikha, & Chabchoub, 2009; Zaras,
2004), allowing for different uncertainty formats to be included
in the same decision problem.

Other pairwise comparisons of probability distributions have
been incorporated into stochastic outranking methods. Jacquet-
Lagrèze (1977) allocates the part of fij (fkj) where there is a non-
zero probability of ak (ai) occurring as evidence in support of indif-
ference, and then uses the cumulative distributions to allocate the
remaining probability mass as evidence either that alternative ai is
preferred to ak, or vice versa. Aggregation proceeds as for ELECTRE I. A
second set of models (Dendrou, Dendrou, & Houstis, 1980; Fan, Liu,
& Feng, 2010; Liu, Fan, & Zhang, 2011; Martel et al., 1986) construct
a matrix Pj whose entries Pj

ik denote the probability that alternative
ai is superior to alternative ak on criterion cj. The models differ with
respect to the subsequent exploitation of these probabilities. Dend-
rou et al. (1980) and Liu et al. (2011) aggregate the Pj

ik using a
weighted sum over attributes. Martel and d’Avignon (1982), Martel
et al. (1986) use much the same approach but incorporate indiffer-
ence and preference thresholds. Fan et al. (2010) compute joint
probabilities associated with each of 2J possible permutations of
binary indicators denoting (attribute-specific) outranking between
a pair of alternatives. Each of these is taken as evidence in favor of
the ‘superiority’, ‘inferiority’, or ‘indifference’ of ai relative to ak,
based on a user-defined threshold.

2.2. Distributive outranking methods

In all of the outranking models above the distributional aspect
of the problem is fully absorbed into the problem at an early stage
of the process through the definition of the Pj

ik or stochastic dom-
inance relations. In contrast, (d’Avignon & Vincke, 1988) use the
uncertain attribute evaluations to form a stochastic (or ‘‘distribu-
tive’’) outranking degree indicating the probability of attaining var-
ious degrees of outranking, rather than summarizing the stochastic
evaluations directly as Pj

ik.
The first step involves defining a preference index Ij(zij,m,zkj,n)

denoting the degree of preference for zij,m over zkj,n. This index is
scaled between 0 and wj, where wj is the normalized weight at-
tached to criterion cj. A random variable Hj(ai,ak) can then be de-
fined over the possible values of Ij(zij,m,zkj,n), with the probability
corresponding to each Hj(ai,ak) given by

Pr½Hjðai; akÞ ¼ h� ¼
X

fm;n:Ijðzij;m ;zkj;nÞ¼hg
fijðzij;mÞfkjðzkj;nÞ ð1Þ

where fij(zij,m) denotes the probability of obtaining zij,m for alterna-
tive ai on criterion cj.

The Hj(ai,ak) can be aggregated into a distributive outranking
degree S(ai,ak) by addition over criteria a la ELECTRE III or PROMETHEE

i.e. Sðai; akÞ ¼
PJ

j¼1Hjðai; akÞ. Further random variables indicating
average ‘strengths’ S(ai) and ‘weaknesses’ W(ai) are formed using
unweighted averages (of S(ai,ak) and S(ak,ai) respectively, "k – i).
The final exploitation of these measures to obtain a partial prefer-
ence order is again complicated by the stochastic nature of the
problem, with several suggestions (the simplest of which is to
use the median of the distributions) proposed in d’Avignon and
Vincke (1988).

Another distributive approach is to use Monte Carlo simulation
from probability distributions. This is the approach followed by the
outranking variant of the stochastic multi-criteria acceptability
analysis (SMAA) method, SMAA-3 (Hokkanen, Lahdelma, Mietti-
nen, & Salminen, 1998). SMAA is a family of inverse-preference
methods that provides information about the types of preferences,
if any, that would lead to the selection of each alternative. The ap-
proach simulates a large number of realizations from probability
distributions governing (a) the uncertain attribute evaluations,
and (b) parameters of the outranking model, and records the pro-
portion and distinguishing features of those weights which result
in each alternative obtaining a particular rank (often the ‘‘best’’
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