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a b s t r a c t

Support Vector Machines (SVMs) is known to be a powerful nonparametric classification technique even
for high-dimensional data. Although predictive ability is important, obtaining an easy-to-interpret clas-
sifier is also crucial in many applications. Linear SVM provides a classifier based on a linear score. In the
case of functional data, the coefficient function that defines such linear score usually has many irregular
oscillations, making it difficult to interpret.

This paper presents a new method, called Interpretable Support Vector Machines for Functional Data, that
provides an interpretable classifier with high predictive power. Interpretability might be understood in
different ways. The proposed method is flexible enough to cope with different notions of interpretability
chosen by the user, thus the obtained coefficient function can be sparse, linear-wise, smooth, etc. The use-
fulness of the proposed method is shown in real applications getting interpretable classifiers with com-
parable, sometimes better, predictive ability versus classical SVM.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The term Functional Data Analysis was already used in [30] two
decades ago. Since them, especially in the last decade, it has be-
come a fruitful field in statistic. The range of real world applica-
tions where the objects can be thought as functions is as diverse
as speech recognition, spectrometry, meteorology or clients seg-
mentation, to cite just a few [19,9,17,20]. The objects of study in
Functional Data Analysis (FDA) are functions. A good review of dif-
ferent FDA techniques applied to real world problems can be found
in [31]. For a deeper insight into the subject see, e.g., [10,32].

We deal with the problem of classifying functional data. Sup-
pose we observe a binary response Y (the class) to a functional pre-
dictor X, where X 2 X is a function defined on the bounded interval
I , i.e., X : I # R, and X is a given set of functions. Our aim is to con-
struct a classification rule that predicts Y for a given functional da-
tum X with good prediction ability and some interpretability
properties.

The classification rule is based on the sign of the so-called score
function f. The score function is an operator f : X # R that assigns a
real number to a given function X. Since our aim is interpretability,
we consider the score function to be a linear operator Tb,x with
coefficient function w 2 X and intercept b 2 R,

f ðXÞ ¼ Tb;wX ¼
Z
I

wðtÞXðtÞdt þ b ¼ hw;Xi þ b; ð1Þ

where hf ; gi ¼
R
I f ðtÞgðtÞdt. The estimation of the coefficient func-

tion w on the whole interval I is an infinite dimensional problem.
This issue is addressed via regularization, which simultaneously al-
lows us to address our other concern: interpretability.

As in standard Support Vector Machines (SVMs), w(t) express
the discriminative power of X(t). For example, areas where w(t)
is zero or small has none or low discrimination power, whereas
for jw(t)j large, one can expect the behavior of X(t) to have influ-
ence over the classification. This idea provides a clear interpreta-
tion of w(t) at a particular time point t, but getting a general idea
about the coefficient function w requires it to be simple: cases
where w(t) has unnatural wiggles all along the interval I are diffi-
cult to interpret.

The simplicity of w might be understood in different ways
depending on the application. For instance, a coefficient function
that is non-zero in just a few points, could detect the few points that
are more relevant in classification. This idea has been proposed
within a logistic regression model, see [24]. In other situations,
one might prefer a coefficient function that is constant over a few
subintervals of I and zero on the rest. A method that detects a
few segments with high discriminative power has been proposed
in [22] by combining feature selection, classical linear discriminant
analysis and SVM. In gene expression analysis, detection of relevant
segments are also quite desirable because relevant genes are ex-
pected to be located close to each other along the chromosome
[33]. All this literature provides different methodologies for differ-
ent notions of interpretability. Our proposal is to provide a common
framework where all this notions can be seen as particular cases.

We use the interpretability notions proposed by [17] for func-
tional linear regression. We consider that a classifier is interpretable
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if one or several derivatives of the coefficient function w are sparse,
i.e., the derivatives are zero in many points. The choice of the deriv-
atives that are enforced to be sparse depends on the notion of inter-
pretability preferred by the practitioner. In this context, this paper
proposes a new method, that we call Interpretable Support Vector
Machines for Functional Data (ISVMFD), producing SVM-based clas-
sifiers for functional data which have high classification accuracy
and whose coefficient functions are easy to interpret. The problem
is formulated as a linear program, in the framework of L1-norm SVM.

The seek of interpretability is not new in functional data analy-
sis. A penalized version of the classical Linear Discriminant Analy-
sis (LDA) is proposed in [14] and is denoted as PDA. PDA and
ISVMFD share common ideas: regularization and interpretability.
However the two methods are different in many aspects. The main
difference is the error criteria used: ISVMFD is based in minimizing
the hinge loss whereas PDA is based on maximizing the between-
class variance relative to the within-class variance. Besides, inter-
pretability in PDA is achieved by using a penalty matrix that im-
poses a spatial smoothness constraint on the coefficients.

Another approach for finding interpretable classifier is variable
clustering techniques, or in a more general framework, variable
selection. Methods that use this kind of selection techniques are
usually based on a two-phase framework. There is a phase where
the variables are clustered or selected, and the classifier is built
in a posterior phase. For instance, in [18] a variable clustering
phase is embedding into a three-phase classification procedure in
order to select ranges in spectra. See, for instance, [12,13] for a re-
view in the wide variety of feature selection methods that can be
applied within a two-phase framework. In contrast, when IFSVM
is used, the selection phase is done together with the construction
of the classifier.

The outline of the paper is as follows: Section 2 reviews classical
literature for SVM on multivariate data, its extension to functional
data and how interpretability has been addressed for multivariate
data. In Section 3 the ISVMFD method is introduced and a proposal
to implement it through the use of a basis is provided. Section 4
studies how other methods available in the literature are particular
cases of ISVMFD. A wide study with two real-world datasets is pre-
sented in Section 5 and finally, in Section 6, several conclusions are
driven. An Online Companion Appendix that includes more illus-
trative examples is provided.

2. Support vector machines

We focus in this paper on the binary supervised classification
problem, where two classes {�1,1} of curves need to be discrimi-
nated. SVM [8,27,38] have become very popular during the last dec-
ade. The basic idea behind SVM can be explained geometrically. If
the data are living in a p-dimensional space, SVM finds the separat-
ing hyperplane with maximal margin, i.e., the one furthest away
from the closest objects. This geometrical problem is expressed as
a smooth convex problem with linear constraints, solved either in
its primal or dual form. Another interpretation can be done in terms
of the regularization theory where the hinge loss plus a quadratic
regularization penalty is minimized [15,35]. The most popular
and powerful versions of SVM embed the original variables into a
higher dimensional space [16]. This embedding is usually implicitly
specified by the choice of a function called kernel.

Extensions of SVM to functional data have been proposed in
[28,34]. In [28], SVM is used to represent the functional data by pro-
jecting the original functions onto the eigenfunctions of a Mercer
Kernel. Ref. [34] define new classes of kernels that take into account
the functional nature of the data. Two types of functional kernels
are proposed: projection-based kernels and transformation-based
kernels. In projection-based kernels, the idea is to reduce the

dimensionality of the input space, i.e., to apply the standard filter-
ing approach of FDA. Transformation-based kernels allow to take
into account expert knowledge (such as the fact that the curvatures
of a function can be more discriminant than its values).

In the multivariate context, kernels provide an implicit way to
get a nonlinear classifier, by projecting the data on the higher
dimensional space induced by the kernel. The final classifier is
nonlinear in the original space, but linear in the projected space.
Functional data are indeed high dimensional and the high dimen-
sionality usually generates problems. Therefore the use of kernels
to project data on a higher dimensional space seems to be less cru-
cial. Moreover, the kernel-based classifier would be easy to inter-
pret in the projected space, but not in the original one. We focus
on the linear kernel in our method.

The interpretability issue in SVM has already been addressed for
multivariate data. The first attempts to make SVM more interpret-
able make use of a two-step procedure: first, SVM is run, and then a
rule, resembling the SVM-classifier but easier to interpret, is built.
See, e.g. [1,3,26,25]. One obtains an alternative classifier which
hopefully get similar predictions, but is more interpretable. Re-
cently, a two-stage iterated method is proposed for credit decision
making [23], which combines feature selection and multi-criteria
programming. In [6,7], one-step SVM-based procedures are pro-
posed to get the relevant variables and the relevant interactions
between variables. Although one would expect classification rates
to deteriorate when looking for interpretable classifiers, the exper-
iments in [6,7] show that their proposals are competitive with
SVM. See [2,21,37,39] for other recent references on the topic.

3. Methodology

3.1. Interpretable support vector machines for functional data

Let fXu;Yugn
u¼1 be a sample of n functional data Xu 2 X together

with its class Yu 2 {�1,1}. The classical SVM with the linear kernel
seeks for the coefficient function w that minimizes

minw;bkwkq
q þ C

Xn

u¼1

hðyu; hw;Xui þ bÞ ð2Þ

where k � kq is the q-norm, h(y,s) = (1 � ys)+ is the hinge loss and C
is a tuning parameter that trades off the regularization term kxkq

q

and the loss term.
The class is predicted as the sign of the score function given in

(1). In case of ties, i.e., f(X) = 0, prediction can be randomly assigned
or following some predefined order. Throughout this article, fol-
lowing a worst case approach, ties will be considered as
misclassifications.

Although the regularization with the Euclidean norm is the
most common, other norms have also been applied. For instance,
the L1 norm is known to be good when a sparse coefficient vector
is desirable. Ref. [4] demonstrated the usefulness of penalties
based on the L1 norm in classification problems. In regression, LAS-
SO [35] and the Dantzig selector [5] also successfully use the L1

norm in high-dimensional problems.
In order to get the interpretable classifier, we propose a modi-

fied version of SVM that we call Interpretable Support Vector Ma-
chines for Functional Data (ISVMFD). Following the concepts of
interpretability described in Section 1, we propose to use a differ-
ent regularization term that depends on the preferences of the user
for the interpretability notion. The user must select one or several
derivatives to be sparse. For example, if the user is concerned with
detecting relevant time points, the zero derivative (the actual w) is
selected to be sparse. Sparsity of the first derivative leads to con-
stant-wise w which is useful to identify relevant segments. A user
might prefer a coefficient function that is zero over large regions,
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