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a b s t r a c t

The Steiner tree problem (STP) is one of the most popular combinatorial optimization problems with var-
ious practical applications. In this paper, we propose a Breakout Local Search (BLS) algorithm for an
important generalization of the STP: the Steiner tree problem with revenue, budget and hop constraints
(STPRBH), which consists of determining a subtree of a given undirected graph which maximizes the col-
lected revenues, subject to both budget and hop constraints. Starting from a probabilistically constructed
initial solution, BLS uses a Neighborhood Search (NS) procedure based on several specifically designed
move operators for local optimization, and employs an adaptive diversification strategy to escape from
local optima. The diversification mechanism is implemented by adaptive perturbations, guided by dedi-
cated information of discovered high-quality solutions. Computational results based on 240 benchmarks
show that BLS produces competitive results with respect to several previous approaches. For the 56 most
challenging instances with unknown optimal results, BLS succeeds in improving 49 and matching one
best known results within reasonable time. For the 184 instances which have been solved to optimality,
BLS can also match 167 optimal results.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many problems in network designing, e.g., electricity, telecom-
munication, heating, transportation, should determine a least cost
tree spanning all or some of the vertices of a given graph (Avella,
Villacci, & Sforza, 2005; Voß, 2006). These problems usually can
be modeled as the Steiner tree problem (STP) or the minimum
spanning tree problem (MSTP), which are generally formulated
as follows: given a graph G = (V,E) with vertex set V = {1, . . . ,n}
which is partitioned into two sets: a set of terminal vertices and
a set of Steiner vertices, and edge set E = {(i, j): i, j 2 V, i – j} where
each edge (i, j) 2 E has an associated cost cij P 0. In some cases, a
specified vertex is chosen as the root vertex. The STP consists of
determining a subtree spanning all terminal vertices (including
the root vertex) and possibly some Steiner vertices, so as to mini-
mize the total cost of the obtained tree. As a special variant of the
STP, for the MSTP, all vertices are terminal which should be in-
cluded in any feasible solution. Unlike the MSTP that can be solved
to optimality within polynomial time (Prim, 1957), the STP has
proven to be NP-hard (Garey, Graham, & Johnson, 1977).

In this paper, we study an important variant of the STP: the
Steiner tree problem with revenue, budget and hop constraints

(denoted by STPRBH, as formulated in Costa, Cordeau, & Laporte,
2009). In this problem, in addition to the costs cij P 0 associated
with each edge (i, j) 2 E, there is also a revenue ri P 0 associated
with each vertex i 2 V. The problem consists of determining a
rooted (without loss of generality, vertex 1 is fixed as the root) sub-
tree of graph G, so as to maximize the collected revenues, while
guaranteeing that the total cost of the solution does not exceed a
given budget B (budget constraint), and the number of edges from
the root to any vertex in the solution subtree does not exceed an
upper bound equal to h (hop constraint). As a generalization of
both the STPP (STP with profits, see Johnson, Minkoff, & Phillips,
2000; Costa, Cordeau, & Laporte, 2006; Haouari, Layeb, & Sherali,
2013) and the STPH (STP with hop constraints, see Vob, 1999;
Akgün, 2011), the STPRBH is theoretically important and can be
used to model many real-life problems, e.g., local access and tele-
communication networks, heating or water supply systems, trans-
portation planning, etc., in which the collected revenues should be
maximized, while the available budget is limited and the reliability
of the system should be guaranteed. For the STPRBH, researchers
have developed various solution approaches. Respectively, Costa,
Cordeau, and Laporte (2008) proposed several fast heuristics,
including a greedy algorithm, a destroy-and-repair algorithm and
a tabu search (TS) algorithm. Computational results for instances
with up to 500 vertices and 12,500 edges were reported. In
addition to the heuristics, several exact algorithms have also
been proposed, including branch-and-cut (Costa et al., 2009),
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branch-and-price (Sinnl, 2011). Note that all the existing exact
algorithms can only solve instances with up to 500 vertices and
625 edges to optimality, for larger instances, no result has been re-
ported by any exact algorithm.

In this paper, we are interested in the STPRBH and propose a
heuristic algorithm based on the Breakout Local Search (BLS) for
this problem. BLS follows the general Iterated Local Search scheme
(Lourenco, Martin, & Stützle, 2003) and alternates between a
neighborhood search phase and a perturbation phase. BLS has re-
cently shown its effectiveness for solving several combinatorial
optimization problems, such as sum coloring (Benlic & Hao,
2012), maximum clique (Benlic & Hao, 2013a), quadratic assign-
ment (Benlic & Hao, 2013b), and max-cut (Benlic & Hao, 2013c).
For the STPRBH, the proposed BLS algorithm integrates a probabi-
listic constructive procedure to generate its initial solution, a
Neighborhood Search (NS) procedure based on three specifically
designed move operators to discover local optima, and an adaptive
perturbation strategy to continually move from one local optimum
to another one, by varying its perturbations depending on the
search status. As a supplementary technique, a number of high-
quality solutions are stored in a solutions pool, in order to provide
useful information for local optimization and perturbations. Com-
putational results based on a set of 240 STPRBH instances, includ-
ing 56 the most challenging instances with unknown optimal
solutions, demonstrate the effectiveness of the proposed BLS algo-
rithm. In particular, it succeeds in improving 49 and matching one
best known results out of these 56 unsolved instances.

The rest of this paper is organized as follows: After giving some
preliminary definitions in Section 2, Section 3 describes the details
of the proposed BLS approach. Computational results are provided
in Section 4, and Section 5 concludes this paper.

2. Preliminary definitions

In this section, we provide some preliminary definitions which
are useful for a precise description of the proposed algorithm.

Definition 1. A budget and hop constrained Steiner tree (BHS-tree) is
a rooted subtree of graph G meeting both the budget and hop
constraints. A BHS-tree is also called a feasible solution of the
problem.

Definition 2. Given a BHS-tree T, a feasible candidate path with
respect to T is a path originating at a vertex i 2 v(T) (v(T) denotes
the set containing all the vertices belonging to solution T) and con-
necting to an uncollected profitable vertex j (j R v(T), rj > 0), such
that even after inserting this path to T, the obtained solution is still
a BHS-tree, i.e., satisfying both the budget and hop constraints.

Definition 3. A saturated BHS-tree is a BHS-tree for which no fea-
sible candidate path exists. Otherwise, the BHS-tree is an unsatu-
rated (or partial) BHS-tree. Contrary to a saturated BHS-tree, an
unsaturated (or partial) BHS-tree can be further extended by add-
ing some feasible candidate path without violating the budget and
hop constraints.

Definition 4. The constrained search space X is composed of all
possible BHS-trees (including saturated ones or unsaturated ones).
The saturated constrained search space X is composed of all possible
saturated BHS-trees which is clearly a subspace of X.

As detailed below, our BLS algorithm restricts its search within
the saturated constrained search space X. By doing so, the search
process focuses always on the reduced zones composed of the
most promising candidate solutions.

3. The proposed BLS algorithm

In this paper, we present for the first time a Breakout Local
Search (BLS) approach for solving the STPRBH, just as outlined in
Algorithm 1, whose key components are presented in the following
subsections.

Algorithm 1. Breakout Local Search BLS(G,B,h) for the STPRBH

Require: Graph G(V,E), budget limit B, hops limit h, jump
magnitude L 2 [Lmin,Lmax], high-quality (elite) solution pool
HSP

Ensure: The best solution found meeting both the budget and
hop constraints

1: /⁄ Initialization phase ⁄/
2: HSP InitHSP() /⁄ Initialize HSP, see Section 3.3.2 ⁄/
3: T InitSolution(G,B,h) /⁄ Construct an initial solution, see

Section 3.2 ⁄/
4: T NS(T) /⁄ Optimize T by neighborhood search, see

Section 3.3 ⁄/
5: Tbest T
6: L Lmin

7: /⁄ Main search procedure which is iterated until the stop
condition is met ⁄/

8: while The stop condition is not met do
9: /⁄ Perturb T with L and HSP (Section 3.4) and then

improve it (Section 3.3) ⁄/
10: T0  Perturb(T,HSP,L)
11: T⁄ NS(T’)
12: /⁄ Update the best solution Tbest found so far if needed ⁄/
13: if T⁄ is better than Tbest (see Section 3.3.1) then
14: Tbest T⁄

15: end if
16: /⁄ Determine the jump magnitude L adaptively, detailed

in Section 3.4 ⁄/
17: if T⁄ is too close to T (defined in Section 3.4) then
18: L Min(L + 1,Lmax)
19: else
20: L Max(L � 1,Lmin)
21: end if
22: /⁄ Update T, which serves as the starting point of a new

round of search ⁄/
23: T T⁄

24: end while
25: return Tbest

Our BLS algorithm operates within the saturated constrained
search space X (Section 2). The main idea of the approach for the
STPRBH can be described as follows: starting from a saturated
BHS-tree probabilistically constructed by the dedicated probabilis-
tic constructive procedure (see Algorithm 1, line 3 and Section 3.2),
BLS applies a Neighborhood Search (NS) procedure to reach a local
optimum at first (line 4, see Section 3.3). After local optimization,
BLS then attempts to continually move from one local optimum
to another by employing varying perturbations, depending on the
state of the search. For this purpose, an adaptive perturbation
mechanism is developed, which is guided by some dedicated infor-
mation of a number of recorded high quality solutions stored in the
HSP (line 2 and line 10, see Sections 3.3.2 and 3.4). Each time the
incumbent solution is perturbed, the NS procedure is called again
to improve it to a new local optimum (line 11). If the NS procedure
reaches a local optimum not far enough from the original one, BLS
then perturbs it more strongly, otherwise, BLS switches to weaker
perturbations subsequently (lines 16–21). This process is repeated
until (1) the upper bound of the collected revenues in Eq. (2) (see
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