
Innovative Applications of O.R.

Simulated annealing and tabu search approaches for the Corridor
Allocation Problem q

H. Ahonen, A.G. de Alvarenga, A.R.S. Amaral ⇑
Departamento de Informática, Universidade Federal do Espírito Santo, 29060-900 Vitória, ES, Brazil

a r t i c l e i n f o

Article history:
Received 11 July 2012
Accepted 9 July 2013
Available online 17 July 2013

Keywords:
Facilities planning and design
Tabu search
Simulated annealing
Combinatorial optimization

a b s t r a c t

In the Corridor Allocation Problem, we are given n facilities to be arranged along a corridor. The arrange-
ments on either side of the corridor should start from a common point on the left end of the corridor. In
addition, no space is allowed between two adjacent facilities. The problem is motivated by applications
such as the arrangement of rooms in office buildings, hospitals, shopping centers or schools. Tabu search
and simulated annealing algorithms are presented to minimize the sum of weighted distances between
every pair of facilities. The algorithms are evaluated on several instances of different sizes either ran-
domly generated or available in the literature. Both algorithms reached the optimal (when available)
or best-known solutions of the instances with n 6 30. For larger instances with size 42 6 n 6 70, the sim-
ulated annealing implementation obtained smaller objective values, while requiring a smaller number of
function evaluations.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Corridor Allocation Problem (Amaral, 2012), hereafter
abbreviated as CAP, seeks to arrange n facilities without overlap
along a corridor subject to two constraints: the arrangement on
both sides of the corridor should start from a common point on
the left end of the corridor; and no space is allowed between
two adjacent facilities. We are given the length li of each facility i
and the nonnegative amount of flow cij between facility i and j.
The width of the corridor is considered to be negligible, thus the
distance between two facilities i and j with respect to a certain
CAP layout is the x-distance between their centers. The total flow
cost is a weighted sum of the distances between each pair of facil-
ities using the parameters cij as weights. The objective of the CAP is
to find a layout that minimizes the total flow cost over all possible
layouts.

The CAP has close relationships with other problems in the lit-
erature. For example, in the single row facility layout problem
(SRFLP) we wish to find an arrangement of the facilities of known
lengths, all placed at the same side of the corridor, so as to mini-
mize the total flow cost. Surveys (Anjos and Liers, 2012; Kothari
and Ghosh, 2012) and several methods are presented in the SRFLP
literature: exact methods (e.g. Amaral, 2006, 2008, 2009b, 2009a;

Anjos and Vannelli, 2008; Simmons, 1969), heuristic methods (e.g.
Datta et al., 2011; de Alvarenga et al., 2000; Kothari and Ghosh,
2013), and lower bounding methods (e.g. Amaral and Letchford,
2012; Anjos et al., 2005; Anjos and Yen, 2009; Hungerländer and
Rendl, 2012).

The CAP is also close to the double row layout problem (DRLP)
(e.g. Amaral, 2013; Chung and Tanchoco, 2010; Heragu and Ku-
siak, 1988; Zhang and Murray, 2012), which is originally moti-
vated by the arrangement of machines in a manufacturing
system. In the DRLP, the facilities are placed on both sides of
the corridor but the upper and lower arrangements do not have
to start from a common point; and some space may be allowed
between adjacent facilities.

Amaral (2012) presented a mixed integer programming (MIP)
formulation of the CAP. However, the CAP is NP-Hard, which lim-
its the efficiency of an exact approach. For example, a CAP in-
stance of size of n = 15 could not be solved to optimality by
cplex after 8.6 hours of execution time. Therefore, there is a quest
for heuristic approaches that can efficiently deal with large in-
stances of the problem. In this regard, Amaral (2012) proposed
a metaheuristic algorithm for the CAP and tested instances of size
n = 30 facilities.

A recent working paper by Ghosh and Kothari (2012) develops a
hybrid genetic algorithm and a scatter search algorithm with path-
relinking for the CAP. Another recent working paper by Hungerlän-
der and Anjos (2012) studies the CAP and presents lower bounds
using semidefinite optimization and a heuristic to obtain feasible
layouts from the solutions of the semidefinite programming
(SDP) relaxations.

0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.07.010

q This work was carried out while the last author was with CEG/IST – Instituto
Superior Técnico, Technical University of Lisbon, Portugal.
⇑ Corresponding author. Tel.: +55 27 4009 2679.

E-mail addresses: hannu@inf.ufes.br (H. Ahonen), agomes@inf.ufes.br (A.G. de
Alvarenga), amaral@inf.ufes.br (A.R.S. Amaral).

European Journal of Operational Research 232 (2014) 221–233

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejor.2013.07.010&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.07.010
mailto:hannu@inf.ufes.br
mailto:agomes@inf.ufes.br
mailto:amaral@inf.ufes.br
http://dx.doi.org/10.1016/j.ejor.2013.07.010
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


The CAP is important from a practical point of view. It has
applications such as the arrangement of rooms in office buildings,
hospitals, shopping centers or schools (Amaral, 2012). Other
applications include the layout design problem where the facility
is divided into bays, which are arranged along a central spine.
This spine configuration is a common design for the layout in
semiconductor wafer fabrication facilities (Yang and Peters,
1997).

In this paper, tabu search and simulated annealing algorithms
are implemented for the CAP. An adequate neighborhood structure
and a local search procedure, which are exploited by the two algo-
rithms, are explained in the next section. Then, Section 3 presents
the elements of the tabu search implementation such as the tabu
status mechanism, aspiration criterion and diversification. Sec-
tion 4 describes the simulated annealing implementation and its
constituents: the classical simulated annealing procedure and the
reversed simulated annealing procedure, which starts with a low
temperature and increases it. In Section 5, the tabu search and sim-
ulated annealing algorithms are evaluated on some instances with
n 6 15 taken from Simmons (1969), Amaral (2006) and Amaral
(2012); and on some others having n = 30 facilities from Anjos
and Vannelli (2008). In addition, the algorithms are evaluated on
even larger instances: thirty-six randomly generated instances
having n = 60 and a selected set of ‘‘sko’’ instances with sizes 42,
49, 56 and 64 of Anjos and Yen (2009); and two AKV instances of
sizes 60 and 70 of Anjos et al. (2005).

2. The neighborhood structure and local search procedure

The tabu search and simulated annealing implementations both
exploit the same neighborhood structure described in Section 2.1.
Similarly, both implementations contain calls to the local search
procedure explained in Section 2.2.

2.1. The neighborhood structure

The neighborhood structure used in this work is defined by two
sets of swap moves: set C of column swaps and set E of row ele-
ment swaps. The swaps are applied to a 2 � n matrix representa-
tion of an n-facility arrangement, in which a non-zero value of a
row element indicates the position of a facility on the correspond-
ing side of the corridor. A zero value means that the facility is not
present at that side of the corridor. That is, an arrangement is a ma-
trix A = (aij) with elements

aij ¼
k; if facility j is at position k on side i;

0; if facility j is not on side i;

�
ð1Þ

where i = 1,2; j = 1,2, . . . ,n; and k 2 {1,2, . . . ,n}.
For example, if n = 5, the matrix

A ¼
0 2 0 1 0
3 0 1 0 2

� �
ð2Þ

represents an arrangement, in which facilities 2 and 4 (cf. the ele-
ments of the first row at columns 2 and 4) are on one side of the cor-
ridor in the order 4 and 2, while the order of facilities on the other
side of the corridor is 3, 5 and 1.

A column swap is defined as an exchange of two columns in the
matrix. This kind of swap may result in changing facility order
only on one side of the corridor or in moving a facility from
one side of the corridor to the other. For example, the swap of col-
umns 2 and 4 in (2) puts facility 2 as the first and facility 4 as the
second facility on the upper side of the corridor, and the swap of
columns 1 and 2 modifies the arrangements on both sides of the
corridor placing facility 1 as the second facility on the upper side

of the corridor and facility 2 as the third facility on the lower side
of the corridor.

A row element swap exchanges elements of a given column and
associates a given position to the new non-zero element. For
example in (2), a swap of the elements in the third column with
a given new position, say 3, for the non-zero element changes facil-
ity 3 to be the third facility on the upper side of the corridor. If the
new given position of the non-zero element happens to be before
other positions on the new side, an update of the succeeding posi-
tions may be needed. For example, a swap of the elements in the
third column with the given new position for the non-zero element
being 1 means that facility 3 should become the first facility on the
upper side of the corridor; then, the positions of facilities 4 and 2
need to be updated to be 2 and 3, respectively. Similarly the posi-
tions on the side from which a facility was removed must be
adjusted. In our example this means assigning facility 5 to position
1 and facility 1 to position 2.

The number of column swaps is equal to n(n � 1)/2. The number
of row element swaps will depend on the current matrix, if all pos-
sible destination positions are allowed to the swap element. In our
implementation only the last position is allowed. The number of
row element swaps is, in this case, equal to n.

2.2. Local search

Another common element to the tabu search and simulated
annealing implementations consists of calls to a local search proce-
dure called Procedure 1.

By which the current solution S with cost c(S) is iteratively im-
proved by application of both column and row element swaps as
long as this is possible.

Procedure 1. localSearch

input: Solution S, array Swaps
output: Best solution SBestNow

1 STest S; SNow S
2 SBestNow S; minVal c(S);
3 repeat
4 improved FALSE;
5 for i = 0 to Swaps.length do
6 STest applySwap(Swaps[i], SNow);
7 if c(STest) < minVal then
8 SNow STest;
9 SBestNow SNow;
10 minVal c(SNow);
11 improved TRUE;
12 end
13 end
14 until improved = FALSE;

Fig. 1. The array Swaps for n = 4. The array Swaps consists of the two types of
swaps: column swaps and row element swaps.

222 H. Ahonen et al. / European Journal of Operational Research 232 (2014) 221–233



Download English Version:

https://daneshyari.com/en/article/479911

Download Persian Version:

https://daneshyari.com/article/479911

Daneshyari.com

https://daneshyari.com/en/article/479911
https://daneshyari.com/article/479911
https://daneshyari.com

