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a b s t r a c t

It is well observed that individual behaviour can have an effect on the efficiency of queueing systems. The
impact of this behaviour on the economic efficiency of public services is considered in this paper where
we present results concerning the congestion related implications of decisions made by individuals when
choosing between facilities. The work presented has important managerial implications at a public policy
level when considering the effect of allowing individuals to choose between providers. We show that in
general the introduction of choice in an already inefficient system will not have a negative effect. Intro-
ducing choice in a system that copes with demand will have a negative effect.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

What damage do the selfish choices of some afflict onto the
welfare of all? The work presented in this paper answers this ques-
tion in the context of public service systems.

There is a substantial quantity of literature on the subject of
equilibrium behaviour of a queueing system where congestion is
a factor influencing behaviour [1,5,12,23,31,35,51]. This can be
traced back to a series of short communications between Lee-
man [28,29] and Saaty [44]. This paper builds on this literature
by considering the problem of public service systems. For most
public services, congestion is a negative aspect of service quality.
Examples of this are healthcare systems (waiting lists), trans-
ports systems (traffic jams) and/or schools (overcrowding of
class rooms).

The degree of central control that should be exercised is a very
important question to be considered by governments and/or policy
makers. What is the effect of allowing individuals to choose service
provider?

Of course, the motivation for the introduction of choice is to
create competition in the hope that this would improve overall
service quality (an economic evaluation of this point of view
can be found in [40]). The aim of the work presented here is
to use a game theoretical approach to quantify the effect of
removing central control for a given system. For example, con-
sider a situation where the particular providers of a system
might have optimised their service delivery (perhaps due to com-

petition). In this system if we were to start routing individuals
so as to optimise overall quality of service, we would (by defini-
tion) notice an improvement over a situation where individuals
had choice. This impact of choice is the one considered here.
The approach proposed is based on a measure called the price
of anarchy [2,7,8,10,14,18–20,34,41–43,47,52]. First introduced
in [25] (a conference paper that has been reprinted in [26]),
the price of anarchy is the ratio of the costs of the worst possi-
ble Nash equilibrium and the social optimum, and can therefore
be interpreted as a measure of the efficiency of a system.

The main contributions of this paper are as follows:

� A novel connection is made: placing choice between public ser-
vices within the formulation of routing games.
� Theoretical results are obtained as to the effect of demand and

worth of service.
� It is shown that in a public service system with an adequate

capacity to provide the perceived worth of service, a high price
of anarchy is to be expected.
� A numerical approach based on heuristics is proposed to calcu-

late the price of anarchy in a real world setting.
� The above ideas are demonstrated with a large scale real world

case study.

The paper is organised as follows: Section 2 will give a brief
overview of routing games; Section 3 will interpret choice of
public services as a routing game; Section 4 will study a partic-
ular model that gives an insightful conclusion as to efficiency of
general public service providers under choice; Section 5 looks at
an application using hospital performance data for elective knee
replacement surgery in Wales; Section 6 makes concluding
remarks.
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2. Routing games

This section gives a brief introduction to routing games follow-
ing very closely [37]. For a thorough overview of routing games the
reader is encouraged to view [37,42].

A non-atomic routing game (atomic routing games will not be
considered in this work), is defined on a network G = (V,E), with
vertex set V and edge set E, as well as a set of source-sink pairs:
{(s1, t1), (s2, t2), . . . , (sk, tk)}. These pairs are called commodities. The
set of all possible (si, ti) paths (for i 2 [k]) is denoted as Pi. Thus,
Pi denotes the set of all the possible routes that player i may take
to get from source si to sink ti. Only networks with
Pi – ; for all i 2 ½k� are considered and P ¼

S
i2½k�Pi. The graph G

is allowed to have multiple edges and a vertex can participate in
multiple source-sink pairs.

The routes taken by traffic are called flows, where f 2 R
jPj
P0 de-

notes a particular flow and fP is interpreted as the quantity of traffic
of commodity i choosing path P for P 2 Pi. A flow f is called feasible
for r 2 Rk

P0 if and only if
P

P2Pi
fP ¼ ri for all i 2 [k]. Thus, the vector r

denotes a prescribed quantity of traffic that must travel from
sources to sinks.

What is now needed is some way of differentiating the various
paths (indeed some paths may be better than others). Each edge
e 2 E of G has a cost function ce : RP0 ! RP0 and it is assumed that
ce is non-negative, continuous, convex and non-decreasing. Using
this, one can quantify the efficiency of a flow f; we define the cost
of a flow C(f):

Cðf Þ :¼
X
P2P

cPðf Þfp

where cP(f) naturally denotes the cost incurred by the traffic choos-
ing path P. A routing game is then defined by the triple (G,r,c).

Importantly this cost function takes into account the quantity
travelling through a particular path. It is immediate to give an
equivalent definition:

Cðf Þ :¼
X
e2E

ceðf Þfe ð1Þ

where fe corresponds to the quantity of traffic using edge e.
Using this we give the following definitions:

Definition 2.1. For the routing game (G,r,c), the flow f⁄ is an
optimal flow if and only if f⁄ minimises C (as given by (1)) over all
feasible flows f.

The next definition corresponds to an absence of central control.
Note that the term ‘‘Wardrop equilibrium’’ [48] is also used how-
ever we choose to use the term ‘‘Nash flow’’ in line with [42].

Definition 2.2. For the routing game (G,r,c), the flow ~f is a Nash
flow if and only if for every commodity i 2 [k] and every pair of
paths P1, P2 with ~f P1 > 0 we have:

cP1 ð~f Þ 6 cP2 ð~f Þ

Thus, ~f is a Nash flow if and only if all used paths have mini-
mum possible cost. This ensures that no user can improve their sit-
uation. We now state (without proof) two very powerful results
obtained in [4].

Theorem 2.3. The flow f⁄ is an optimal flow for (G, r, c) if and only if f⁄

is a Nash flow for the instance (G,r, c⁄) where:

c�eðxÞ ¼
d
dx

xceðxÞ ¼ ceðxÞ þ x
d
dx

ceðxÞ ð2Þ

The cost c�eðxÞ is called the marginal cost for e. This powerful re-
sult shows that mathematically, Nash flows and optimal flows are
analogous. The next result simply confirms this.

Theorem 2.4. The flow ~f is a Nash flow for (G,r, c) if and only if ~f
minimises U where:

Uðf Þ ¼
X
e2E

Z fe

0
ceðxÞdx ð3Þ

The function U is called the potential function for (G,r,c). As sta-
ted we give these results without proof but encourage the reader to
see [37,42].

The object of the work in this paper is to present a measure of
the efficiency of a system, the measure we shall use is given by
the following definition.

Definition 2.5. For the routing game (G,r,c), the price of anarchy
denoted by PoA(G,r,c) is given by:

PoAðG; r; cÞ ¼ Cð~f Þ
Cðf �Þ

Note that the definition taken here differs slightly to the com-
mon definition taken as the worst case ratio. The price of anarchy
quantifies the inefficiency created by choice. We illustrate these
ideas through a famous example, known as, Pigou’s example [39].

The network of Fig. 1 corresponds to the routing game, where
traffic has a choice of two paths to reach the sink. The upper arc
corresponds to a large highway and the travel time is independent
(say 1 hour) of the quantity of traffic using that highway. The lower
arc corresponds to a much smaller road, that is heavily affected by
congestion and the time spent on this road is equivalent to the pro-
portion of traffic that uses it. It is immediate to note that the Nash
flow of this game is given by ~f ¼ ð0;1Þ, since all traffic will go along
the smaller road (thus incurring an hour of travel time), in the hope
that at least a small quantity of traffic will use the larger road. The
cost function for this game is:

Cðf1; f2Þ ¼ Cð1� x; xÞ ¼ 1� xþ x2

thus, the optimal flow is f � ¼ 1
2 ;

1
2

� �
. It is then straightforward to cal-

culate the price of anarchy: PoAðG; r; cÞ ¼ 4
3.

Note that the potential function for this game is:

Uðf1; f2Þ ¼ Uð1� x; xÞ ¼
Z 1�x

0
1dxþ

Z x

0
xdx ¼ 1� xþ x2

2

minimising U gives ~f ¼ ð0;1Þ as required. For this simple game, cal-
culating the Nash flow does not require using the potential function.
However, optimising U gives an algorithmic approach. This will be
the method used when calculating the price of anarchy for large
systems.

In the next section we show how these ideas will be used to
measure the efficiency of a public service system.

1

x

1

Fig. 1. Pigou’s example.
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