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a b s t r a c t

We describe a simple computing technique for the tournament choice problem. It rests upon relational
modeling and uses the BDD-based computer system RELVIEW for the evaluation of the relation-algebraic
expressions that specify the solutions and for the visualization of the computed results. The Copeland set
can immediately be identified using RELVIEW’s labeling feature. Relation-algebraic specifications of the
Condorcet non-losers, the Schwartz set, the top cycle, the uncovered set, the minimal covering set, the
Banks set, and the tournament equilibrium set are delivered. We present an example of a tournament
on a small set of alternatives, for which the above choice sets are computed and visualized via RELVIEW.
The technique described in this paper is very flexible and especially appropriate for prototyping and
experimentation, and as such very instructive for educational purposes. It can easily be applied to other
problems of social choice and game theory.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Science is a process for obtaining new insights and building new
knowledge in the form of testable explanations and predictions
about the universe. Systematic experiments are an accepted means
for doing science and they become increasingly important as one
proceeds in investigations. In natural sciences they are used since
centuries. Also in social sciences, which apply scientific methods
to study human behavior and social patterns, experimental and
empirical methods are of importance. But in the meantime they
have also become important in formal sciences, like mathematics
and theoretical computer science, for identifying properties and
patterns, and for testing and especially falsifying conjectures. In
this context, tool support is indispensable. Computer programs
are used in numerous scientific fields to calculate results as well
as to elucidate the underlying mathematical principles by means
of visualization and animation. Frequently use is made of general
computer algebra systems, like MAPLE and MATHEMATICA. But also sys-
tems that focus on specific domains of applications are applied.

RELVIEW (cf. [3,26]) is such a so-called specific purpose computer
algebra system for (heterogeneous) relation algebra in the sense
of [30,31]. More precisely, RELVIEW is a tool for the visualization
and manipulation of relations, for prototyping and relational pro-
gramming, and as such it appears to be very useful and appropriate

for applications to social choice and game theory. In this system,
computational tasks on relations can be described by short and
concise programs which frequently consist of only a few lines that
present the relation-algebraic expressions of the notions in ques-
tion. Such programs are easy to alter in case of slightly changed
specifications. Combining this with RELVIEW’s possibilities for visu-
alization and stepwise execution of programs makes RELVIEW suit-
able for experimentation and exploration, while avoiding
unnecessary expenditure of work. Another advantage of the sys-
tem is its implementation of relations via binary decision diagrams
(BDDs) that proved to be superior to many other well-known
implementations, like Boolean matrices, lists of pairs and lists of
successor or predecessor lists. This leads to an amazing computa-
tional power, in particular if the solution of a hard problem re-
quires the enumeration of a huge set of ‘interesting objects’ and
a search through it. Applications in this regard can be found, e.g.,
in [2,3,25,26].

In [4–6] we have combined relation algebra and RELVIEW to solve
some problems of computational social choice theory, viz. the for-
mation of stable governments (see [29]) and the determination of
the strength and influence of players (see, e.g., [20]). The first prob-
lem is a specific instance of one of the most interesting problems of
social choice theory, viz. the computation of the set of most desir-
able alternatives according to an asymmetric dominance relation on
given alternatives that summarizes the results of the individual
preferences. Since the dominance relation may contain cycles,
the concept of a best alternative that dominates all other alterna-
tives is not applicable in most cases. Even undominated alterna-
tives need not exist. To get around these problems, in the
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literature so-called choice sets are considered that take over the
role of the best/undominated alternative(s).

In this paper we show how certain important choice sets can be
computed using relation algebra and the RELVIEW tool. We restrict
our analysis to complete dominance relations, where each pair of
different elements is related. Such relations are known as tourna-
ment relations and they arise if the pair-wise comparison method
and a tie-breaking rule are used for preference aggregation. The ele-
ments of the choice sets are called tournament winners. But most of
our results also hold in the case of non-complete dominance rela-
tions or can easily be extended to them. In this paper, we deliver
relation-algebraic specifications of the following choice sets: Con-
dorcet non-losers, the Schwartz set, the top cycle, the uncovered
set, the minimal covering set, the Banks set, and the tournament
equilibrium set. Moreover, the above choice sets are visualized via
the RELVIEW tool for a tournament on a small set of alternatives to
give an impression of the possibilities and features of RELVIEW in this
regard. Even in this small example computing by hand the choice
sets just mentioned would already be a major task with a high risk
of making mistakes. RELVIEW guarantees us correct solutions, be-
cause it directly uses the mathematical relation-algebraic equa-
tions, which have been proved to be correct by formal calculations.

The remainder of the paper is organized as follows. First, the
essential relation-algebraic preliminaries are introduced in
Section 2. This includes the relation-algebraic modeling of sets
and Cartesian products and the introduction of some notions that
will be useful for the problems we want to solve. In Section 3 we
first describe some well-known concepts for tournament winners.
To give an impression of RELVIEW’s visualization potential with re-
spect to the computation of choice sets, we then show a series of
pictures produced by the tool. The corresponding relation-
algebraic expressions are presented in Section 4. We demonstrate
how to calculate them from formal logical problem specifications
and how to translate them into the programming language of the
tool. Section 5 sketches some generalizations and contains some
concluding remarks.

2. Relation-algebraic preliminaries

In this section we provide the relation-algebraic preliminaries
as used throughout this paper. In particular, we focus on the mod-
eling of sets and Cartesian products which are not commonly used
and hence require some detailed explanation. More details can be
found, for example, in [30,31].

2.1. Fundamentals of binary relations

We write R: X M Y if R is a (typed and binary) relation with
source X and target Y, i.e., a subset of the Cartesian product
X � Y, and [X M Y] for the type of all these relations, i.e., the power-
set 2X�Y. We may consider R also as a Boolean jXj � jYj matrix if its
carrier sets X and Y are finite. This interpretation is well suited for
many purposes and Boolean matrices are also used as one of the
graphical representations of relations within RELVIEW. Therefore,
in this paper we often use Boolean matrix terminology and nota-
tion. In particular, we speak of rows, columns and entries of rela-
tions and write Rx,y instead of hx, yi 2 R or xRy. To avoid
pathologic cases, in the following we assume that all carrier sets
of relations are non-empty.

We will use the following basic operations on relations (cf.
[30,31]): R (complement, negation), R [ S (union, join), R \ S (inter-
section, meet), RT (transposition, converse relation) and R; S (compo-
sition, multiplication). Furthermore, we will use the special relations
O (empty relation), L (universal relation), and I (identity relation).
Here we overload the symbols, i.e., we avoid the binding of types
to them. Finally, if R: X M Y is included in S: X M Y we write

R # S and equality of R and S is denoted as R = S. In order to reduce
the use of brackets, it is generally agreed that composition binds
stronger than union and intersection. So, for instance, R [ S; T
stands for R [ (S; T) and not for (R [ S); T. Similarly, R; S \ T should
be read as (R; S) \ T and not as R; (S \ T).

A relation R: X M X is asymmetric if R # RT, irreflexive if R # I,
transitive if R; R # R and complete if I # R [ RT. These are the rela-
tion-algebraic (or point-free) specifications of well-known proper-
ties which usually are defined point-wisely. For instance, I # R [ RT

specifies that for all x, y 2 X, from x – y it follows Rx,y or Ry,x, i.e., dif-
ferent elements are related via R. The asymmetry of R implies its
irreflexivity, and in this case the completeness of R is equivalent
to I ¼ R [ RT.

Finally, we need the transitive closure R+: X M X of a relation R:
X M X. This is the least (with respect to inclusion) transitive rela-
tion of type [X M X] that contains R. Via the powers of R, induc-
tively defined by R0 :¼ I and Ri+1 :¼ R; Ri for all i 2 N, we can
specify R+ by R+ =

S
i>0Ri.

2.2. Modeling sets

Relation algebra offers different ways of modeling sets and sub-
sets of sets. Our first modeling uses so-called vectors, which are
relations v with v = v; L. Since for a vector the range is irrelevant,
we consider in the following mostly vectors v: X M 1 with a specific
singleton set 1 = {\} as target and omit in such cases the subscript
\, i.e., we write vx instead of vx,\. Such a vector can be considered
as a Boolean matrix with exactly one column, i.e., as a Boolean col-
umn vector, and represents the subset {x 2 Xjvx} of X. A non-empty
vector v is a point if v; vT # I, i.e., if it is injective. This means that it
represents a singleton subset of its source or an element from it if
we identify a singleton set {x} with the element x. In the Boolean
matrix model, hence, a point v: X M 1 is a Boolean column vector
in which exactly one entry is 1.

As a second way to model sets, we will apply the relation-level
equivalents of the set-theoretic symbol 2, that is, membership-
relations M: X M 2X. These specific relations are defined by
demanding for all x 2 X and Y 2 2X that Mx,Y iff x 2 Y. A simple
Boolean matrix implementation of membership-relations requires
an exponential number of bits. However, in [25] an implementa-
tion of M: X M 2X using BDDs is presented, where the number of
BDD-vertices is linear in the size of the base set X. This implemen-
tation is part of the RELVIEW tool.

Finally, we will use embeddings for modeling sets. Given an
injective function ı: Y ? X (in the usual mathematical sense), we
may consider Y as a subset of X by identifying it with its image un-
der ı. If Y is actually a subset of X and ı is given as a relation of type
[Y M X] such that ıy,x iff y = x for all y 2 Y and x 2 X, then the vector
ıT; L: X M 1 represents Y as a subset of X in the sense above. Clearly,
the transition in the other direction is also possible, i.e., the gener-
ation of an embedding-relation inj(v): Y M X from the vector repre-
sentation v: X M 1 of the subset Y of X such that for all y 2 Y and
x 2 X we have inj(v)y,x iff y = x. We only have to remove from the
identity relation I: X M X all x-rows where the element x ranges
over the set XnY.

Considered as a single vector of type [X M 1], each column of M:
X M 2X represents a single subset of X, so that M column-wise rep-
resents the powerset 2X. A combination of embedding-relations
with membership-relations allows to extend this to a column-wise
representation of subsets of powersets. More specifically, if the
vector v:2X

M 1 represents a subset S of 2X in the sense above
and we define the relation S : X $ S by S :¼M; inj(v)T, then for
all x 2 X and Y 2 S we have Sx,Y iff x 2 Y. This means that the ele-
ments of S are represented precisely by the columns of S. A further

consequence is that ST; S : S$ S is the relation-algebraic
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