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a b s t r a c t

A central design challenge facing network planners is how to select a cost-effective network configura-
tion that can provide uninterrupted service despite edge failures. In this paper, we study the Survivable
Network Design (SND) problem, a core model underlying the design of such resilient networks that incor-
porates complex cost and connectivity trade-offs. Given an undirected graph with specified edge costs
and (integer) connectivity requirements between pairs of nodes, the SND problem seeks the minimum
cost set of edges that interconnects each node pair with at least as many edge-disjoint paths as the con-
nectivity requirement of the nodes. We develop a hierarchical approach for solving the problem that inte-
grates ideas from decomposition, tabu search, randomization, and optimization. The approach
decomposes the SND problem into two subproblems, Backbone design and Access design, and uses an
iterative multi-stage method for solving the SND problem in a hierarchical fashion. Since both subprob-
lems are NP-hard, we develop effective optimization-based tabu search strategies that balance intensifi-
cation and diversification to identify near-optimal solutions. To initiate this method, we develop two
heuristic procedures that can yield good starting points. We test the combined approach on large-scale
SND instances, and empirically assess the quality of the solutions vis-à-vis optimal values or lower
bounds. On average, our hierarchical solution approach generates solutions within 2.7% of optimality
even for very large problems (that cannot be solved using exact methods), and our results demonstrate
that the performance of the method is robust for a variety of problems with different size and connectiv-
ity characteristics.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

As businesses and individuals become increasingly dependent
on round-the-clock use of telecommunication services to interact
and access information (including data and multi-media content),
their expectations about the performance of the networks that pro-
vide these services has also increased. In particular, customers seek
uninterrupted service despite failures in one or more edges of the
network. To meet these expectations, the underlying telecommuni-
cations network must be configured so that it contains redundan-
cies in terms alternate paths. A network is said to be survivable if
it continues to function (allows its customers to communicate
and access online services) even after some of the edges fail. Undi-
rected networks that have a tree configuration (with no redun-
dancy) fall on one end of the survivability spectrum, whereas
those that have a complete (i.e., fully connected) topology lie at
the other extreme. In a tree network, the failure of just a single edge

disrupts the required communication between at least one pair of
nodes; in contrast, a complete network on n nodes is highly surviv-
able since every pair of network nodes can continue to communi-
cate even if any n � 2 edges of the network fail. Complete
networks provide the highest level of reliability, but they are also
very expensive because they assume that all pairs of nodes require
the same (high) level of protection against edge failures even
though only a subset of nodes may have stringent connectivity
requirements. For instance, nodes representing hospitals, emer-
gency call-centers, airports, and financial institutions are very
important, and require a high level of protection via backup com-
munication paths that can be used when the primary paths con-
necting these facilities fail. On the other hand, less important
nodes such as individual customers may not need this level of pro-
tection since these users may be willing to tolerate temporary dis-
ruptions of their services. To develop cost-effective topologies,
network planners must address complex cost-connectivity trade-
offs to take advantage of the differential connectivity requirements.

In this paper, we address the Survivable Network Design (SND)
problem, a core network design problem to identify the least cost net-
work that provides the required connectivity, expressed in terms of
number of edge-disjoint paths, between pairs of nodes. The SND
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problem is NP-hard (Garey and Johnson, 1979) as are many of its spe-
cial cases; indeed, the SND problem generalizes several well-known,
but intractable, problems including the Traveling Salesman problem
(TSP) and the Steiner tree problem. Researchers have also studied
variants of the SND problem. For instance, Baldacci et al. (2007) and
Naji-Azimi et al. (2010) study the m-ring-star problem that requires
installing rings, each with size no more than m nodes and intersecting
only at a central node, to span some or all customer nodes, and
attaching other customers to the rings. Terblanche et al. (2011) con-
sider network configuration and equipment installation to satisfy
multiple non-simultaneous demand scenarios using alternate routes
between demand nodes. Since solving SND problems using standard
models and methods has proved to be very challenging, researchers
have focused on strengthening the problem formulation via strong
valid inequalities to accelerate exact solution methods, characteriz-
ing the worst-case performance of heuristic procedures, and design-
ing efficient algorithms for special cases. Grötschel et al. (1995),
Raghavan and Magnanti (1997), and Kerivin and Mahjoub (2005)
provide excellent surveys of the research on SND problems; Contre-
ras and Fernández (2011) provide a recent review and classification
of network design problems. Recent work includes linear-time algo-
rithms for network design on series–parallel graphs (Raghavan,
2004), strong formulations based on bidirectional flow (Magnanti
and Raghavan, 2005), analysis of the tightness of connectivity-split-
ting models (Balakrishnan et al., 2004), and optimization-based heu-
ristics using connectivity-upgrading models (Balakrishnan et al.,
2009). Yet, effectively solving large-scale instances of SND problems
(e.g., with more than 50 nodes) remains elusive.

In this paper, we develop and test a composite algorithm for
solving large SND problems. The approach, combining decomposi-
tion, metaheuristics, randomization, and optimization, has several
distinctive characteristics. At its core, the method employs a hier-
archical (multi-stage) decomposition framework, consisting of
backbone network design and access network design, to improve
SND solutions. For each stage, we develop a tailored tabu search
method, combined with exact algorithms for embedded subprob-
lems, to explore the appropriate solution neighborhood. To initiate
the algorithm, we apply two optimization-based heuristic methods
that can generate good starting solutions. Subsequent iterations of
the multi-stage procedure are driven by a randomization step to
augment the current best solution and permit fuller exploration
of the solution space. The various components of our algorithm ex-
ploit the problem’s underlying special structures and solution
characteristics, and incorporate tradeoffs between diversification
and intensification of the neighborhood search procedures taking
into account both solution speed and quality.

We implemented the composite solution approach and tested it
on 78 SND problem instances, varying in size and in the structure
of connectivity requirements (both the maximum number of edge-
disjoint paths needed and the proportion of nodes at each connec-
tivity level). The test problems contain up to 100 nodes and 400
edges, and nodes have connectivity requirements of up to four
edge-disjoint paths. The compact flow-based integer programming
formulations for these instances have up to 79,600 variables (of
which 400 are binary) and 128,600 constraints. CPLEX could not
solve some large problems (with more than 80 nodes and 320
edges) even after 72 hours of computation, whereas our method
finds near-optimal solutions relatively quickly. On average, the
solutions we obtain have an optimality gap of 2.7% relative to the
optimal value or a lower bound on this value. Thus, our solutions
are provably close (less than 3% on average) to the optimal SND
solutions. Comparison of the method’s performance across differ-
ent problem scenarios demonstrates that its effectiveness is robust
to variations in problem size and connectivity requirements.

The rest of this paper is organized as follows. Section 2 defines
and formulates the SND problem and discusses the structural

features of SND solutions that motivate our hierarchical approach.
Section 3 provides a detailed description of our multi-stage meth-
od including the tabu search procedure, and Section 4 discusses
our computational design and summarizes the results. Section 5
offers concluding remarks.

2. SND problem definition and solution structure

2.1. Problem formulation

Given an undirected network G: (N,E), with N and E respectively
representing the set of nodes and available edges of the network,
nonnegative costs cij for each edge in {i, j} in E, and nonnegative inte-
ger connectivity parameters qi for each node i, the SND problem
seeks the minimum-cost set of edges that meets all the connectivity
requirements. More important nodes that require greater level of
protection of their communication paths have higher values of qi.
The connectivity parameters translate to the requirement that, for
any pair of nodes i and j, the chosen network must contain at least
rij = min(qi,qj) edge-disjoint paths between these two nodes. Nodes
i with connectivity requirement qi = 0 represent intermediate points
that the network may optionally use to reduce the total cost of the
network; however, we are not required to necessarily span these
nodes. We refer to these locations as Steiner nodes. Nodes with con-
nectivity parameter qi = 1, called regular nodes, represent customers
or locations that have minimal connectivity requirements. That is,
the network design must span these nodes, but we only require
one path between a regular node and every other node with positive
connectivity parameter. Finally, we refer to nodes with qi P 2 as crit-
ical nodes; each of these nodes requires protection in the form of two
or more paths to every other critical node. By permitting nodes to
have different connectivity parameters, the SND problem differenti-
ates nodes in terms of their importance and protection requirements,
and can exploit these differences to reduce the cost of the network.

To formulate the SND problem, we define a binary (0 or 1) var-
iable uij for each edge {i, j} 2 E to indicate whether or not the SND
solution includes this edge. One way to enforce the connectivity
requirements is using cutset constraints (see, for example,
Grötschel et al., 1995), one for each cutset defined by node
partitions {T, NnT}, T � N, that separate at least one node pair i, j
with positive connectivity requirement rij. The constraint corre-
sponding to this cutset specifies that the solution must select at
least max{rij: i 2 T, j 2 NnT} edges from this cutset. Since the net-
work has an exponential number of cutsets, the number of cutset
constraints is also exponential; therefore, solving this model may
require using a cutting plane procedure that dynamically adds vio-
lated cutset constraints. Alternatively, we can use the max-flow
min-cut theorem to develop an equivalent flow-based formulation
that has a polynomial number of constraints (see, for example,
Magnanti and Raghavan, 2005). For this flow formulation, we select
a node with the highest connectivity, say node 1, as the root node,
and let H denote the set of non-Steiner nodes excluding the root
node. For each h 2 H, we define a commodity h with the root node
as the origin node, node h as the destination node, and demand of
qh units. The flow formulation includes additional continuous flow
variables f h

ij to denote the flow of each commodity h 2 H on edge
{i, j} from node i to node j, and uses flow conservation constraints
together with forcing constraints to impose the connectivity
requirements. The two formulations, [CUT] and [FLOW], are pre-
sented below.

½CUT� min
X
fi;jg2E

cijuij

subject to
X

fi;jg2fT;NnTg
uij P max riji2T;j2NnT ; 8 cutsets T

uij 2 f0;1g; 8fi; jg 2 E:
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