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a b s t r a c t

In this paper, we consider the three-dimensional orthogonal bin packing problem, which is a generalization
of the well-known bin packing problem. We present new lower bounds for the problem from a combinato-
rial point of view and demonstrate that they theoretically dominate all previous results from the literature.
The comparison is also done concerning asymptotic worst-case performance ratios. The new lower bounds
can be more efficiently computed in polynomial time. In addition, we study the non-oriented model, which
allows items to be rotated.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The bin packing problem (abbreviated as 1D-BP) is one of the
classic NP-hard combinatorial optimization problems. Given a set
of n items with positive sizes v1, v2, . . . , vn 6 B, the objective is to
find a packing in bins of equal capacity B to minimize the number
of bins required. The problem finds obvious practical usage in
many industrial applications, such as the container loading prob-
lem and the cutting stock problem.

The bin packing problem is strongly NP-hard, and it does not admit
a 3

2� �
� �

-factor approximation algorithm unless P = NP [16]. On the
other hand, Johnson [18] showed that the simple First Fit approach
can yield a 17

10-approximation factor, and the First Fit Decreasing
algorithm can approximate within an asymptotic 11

9 -factor.
Subsequently, Fernandez de la Vega and Lueker [15] proposed an
asymptotic polynomial time approximation scheme (PTAS), and Kar-
markar and Karp [19] presented an improved asymptotic fully PTAS.
For further details of approximation algorithms, readers may refer to
Coffman, Garey and Johnson’s survey [9] and Chapter 9 in [33].

There are many variations of the bin packing problem, such as the
strip packing, square packing and rectangular box packing prob-
lems. In this paper, we consider the three-dimensional orthogonal
bin packing problem (abbreviated as 3D-BP). Given an instance I of

n 3D rectangular items I1, I2, . . . , In, each item Ii is characterized by
its width wi, height hi, depth di and volume vi = wihidi. The goal is
to determine a non-overlapping axis-parallel packing in identical
3D rectangular bins with width W, height H, depth D and size
B = WHD that minimizes the number of bins required. First, we
investigate the oriented model, which assumes that the orientation
of the given items is fixed; that is, the items cannot be rotated and
they are packed with each side parallel to the corresponding bin side.
The non-oriented model, which allows items to be rotated, is also
studied.

A considerable amount of research has been devoted to the design
and analysis of lower bounds for the bin packing problem
[3,6,10,17,20,24,29,32]. Martello and Toth [27,28] and Labbé et al.
[22] proposed lower bounds for 1D-BP, and then Martello and Vigo
[26] and Martello et al. [25] extended the concept to multi-dimen-
sional models. Fekete and Schepers [13,14] devised lower bounds
based on dual feasible functions, which we introduce in Section 2;
and several related results were presented in [4,8]. Boschetti [1] com-
bined Martello and Toth’s work with the above dual feasible functions
and proposed the currently best lower bound for 3D-BP in the litera-
ture; that is, the lower bound dominates all previous 3D-BP results. For
two lower bounds Li and Lj of a minimization problem, Lj is said to
dominate Li, denoted by Li6 Lj, if for any instance I, Li(I)6 Lj(I), where
L(I) is the value provided by a lower bound L for an instance I.

In contrast, there have been comparatively few studies on the
non-oriented model [1,7,12], especially the three-dimensional
model. Dell’Amico et al. [12] presented the first lower bound for
the non-oriented model of the two-dimensional orthogonal bin
packing problem (abbreviated as 2D-BP). Clautiaux et al. considered
different cases of the non-oriented 2D-BP model and proposed a new
lower bound [7]; while Boschetti [1] investigated the non-oriented
3D-BP model and presented two new lower bounds.
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In the following sections, we first review the previously
proposed lower bounds and integrate the best of them for 1D-BP
and 3D-BP to obtain a new lower bound for 3D-BP. Then, we
propose a novel lower bound for 3D-BP and show that it dominates
all the previous results. We also prove the asymptotic worst-case
performance ratios of those results and provide tight examples
that can achieve the ratios. Finally, we present a new lower bound
for the non-oriented 3D-BP model.

2. Preliminaries

2.1. Lower bounds for 1D-BP

An obvious lower bound for 1D-BP, called the continuous lower
bound, can be computed as follows:

L0 ¼
Rn

i¼1v i

B

� �

It is known that the asymptotic worst-case performance ratio of
the continuous lower bound L0 is 1

2 for 1D-BP [27,28]. The lower
bound can be easily extended to 3D-BP by considering the volume
vi of each item Ii. Martello et al. [25] showed that the worst-case
performance ratio of L0 is 1

8 for 3D-BP.
Subsequently, the bound was improved by Martello and Toth

[28]. Under the new bound, denoted by L1, the set of items is
partitioned into two subsets, one of which contains items that
are larger than B/2 and the other contains the remainder. For con-
venience, we define V(a,b] = {Iija < vi 6 b} and its cardinality as
jV(a,b]j. Since each item in the first subset needs one bin, at least
jV(B/2,B]j bins are required. Only items of size vi, p 6 vi 6 B are
considered, where p is an integer with 1 6 p 6 B/2. Hence, a valid
lower bound L1 can be computed if we allow the rest of the items
(i.e., the items in V[p,B/2]) to be split. The lower bound L1 for 1D-BP
is computed as follows:

L1 ¼ jVðB=2;B�j þ max
16p6B=2

0; L1ðpÞ; L01ðpÞ
� �

; where

L1ðpÞ ¼
P

v i2V ½p;B�p�v i

B
� jVðB=2; B� p�j

� �
and

L01ðpÞ ¼
jV ½p;B=2�j �

P
v i2VðB=2;B�p�

B�v i
p

j k
B
p

j k
2
666

3
777

The key concept of the lower bound L1 was explained earlier,
and in the above formula, jV(B/2,B]j + max16p6B/2{0, L1(p)} is spec-
ified more precisely. The rounding technique L01ðpÞ, where
1 6 p 6 B/2, also plays an important role. However, Carlier et al.
[4] proved that the dual feasible function f p

2 , where 1 6 p 6 B/2,
dominates this rounding scheme; therefore, later in the paper,
we will apply f p

2 in some cases of our new lower bounds to improve
the results reported in the literature. We will introduce the dual
feasible functions later. In addition, Martello and Vigo [26] and
Martello et al. [25] extended the lower bound L1 for 1D-BP to the
lower bounds of the multi-dimensional models (2D-BP and 3D-BP).

Labbé et al. [22] further improved L1, denoted as L2, by partition-
ing the set of items into three subsets (V(B/2,B], V(B/3,B/2] and
V[p,B/3], where 1 6 p 6 B/3) and applying the First Fit Decreasing
algorithm [9,18,21]. The procedure is implemented as follows. The
items in V(B/2,B] are assigned to separate bins as L1. It may be pos-
sible to assign some of the items in V(B/3,B/2] to the open bins,
but at most one item in V(B/3,B/2] can fit in any of the open bins.
Thus, the open bins are sorted in non-decreasing order based on
their residual space, and the items in V(B/3,B/2] are assigned in
non-decreasing order of their size. The procedure proves that the
items in V(B/2,B] and V(B/3,B/2] can be matched optimally in a pair-
wise manner. Let K be the subset of items in V(B/3,B/2] that cannot

be matched through the above procedure. The items in K can be
paired, so at least dK/2ebins are required. It follows that a valid lower
bound L2 can be derived by allowing the items in V[p,B/3] to be split
as follows.

L2 ¼ jVðB=2;B�j þ dK=2e þ max
16p6B=3

f0; L2ðpÞg; where

L2ðpÞ ¼
P

v i2V ½p;B�p�v i

B
� jVðB=2;B� p�j � dK=2e

� �

The lower bound L2 can be obtained in O(n) time provided that
the items are pre-sorted according to their size. Bourjolly and
Rebetez [2] and Crainic et al. [11] proved that L1 6 L2 (excluding
the rounding scheme L01ðpÞ), and that the asymptotic worst-case
performance ratio of L2 for 1D-BP is 3

4. Note that the primal concept
of Labbé et al. cannot be easily extended to a new lower bound
Lm�1 for 1D-BP by partitioning the set of items into m subsets, even
by using a brute-force approach. Scholl et al. [31] showed that the
lower bound L2 can be extended by considering the items in V(B/
4,B/3], but the process is quite complicated and it does not have
any obvious extension.

2.2. The dual feasible functions

A function f:[0,1] ? [0,1] is called dual feasible if, for any finite
set S of non-negative real numbers, the following condition holds:X
x2S

x 6 1)
X
x2S

f ðxÞ 6 1

The concept of dual feasible functions was first presented by
Johnson [18] and subsequently extended by Lueker [23]. Dual fea-
sible functions have been widely studied in the design and analysis
of lower bounds for the bin packing problem and its variations. For
more detailed information on a variety of dual feasible functions,
readers may refer to Clautiaux et al.’s survey [6].

Fekete and Schepers [14] proposed using the concept of dual
feasible functions to derive the properties of the lower bounds of
the bin packing problem as follows.

Proposition 1 [14]. Given a dual feasible function f and an instance
I = {v1,v2, . . . ,vn} of the bin packing problem, a lower bound for the
instance f(I) = {f(v1), f(v2), . . . , f(vn)} is also a lower bound for the
instance I.

In this paper, consider two dual feasible functions. The first is
the classic dual feasible function for 1D-BP, f p

0 : ½0;B� ! ½0;B�, which
is defined as follows [4,14]:

f p
0 ðxÞ ¼

B; if x > B� p;

x; if B� p P x P p;

0; otherwise;

8><
>:

where 1 6 p 6 B/2.
The second is the dual feasible function for 1D-BP, f p

2 , proposed
by Carlier et al. [4]. For 1 6 p 6 B=2; f p

2 : ½0;B� ! ½0;2bB=pc� is
defined as follows:

f p
2 ðxÞ ¼

2 B
p

j k
� B�x

p

j k� 	
; if x > B=2;

B
p

j k
; if x ¼ B=2;

2 x
p

j k
; otherwise:

8>>>><
>>>>:

Clautiaux et al. [8] proved that the above functions f p
0 and f p

2 are
maximal dual feasible functions (MDFFs) because there are no dual
feasible functions larger than them [5,8].

Moreover, by definition, composition and convex combinations
of any dual feasible functions are still dual feasible. Thus, the
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