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a b s t r a c t

A Boolean programming problem with a finite number of alternatives where initial coefficients (costs) of
linear payoff functions are subject to perturbations is considered. We define robust solution as a feasible
solution which for a given set of realizations of uncertain parameters guarantees the minimum value of
the worst-case relative regret among all feasible solutions. For the Pareto optimality principle, an appro-
priate definition of the worst-case relative regret is specified. It is shown that this definition is closely
related to the concept of accuracy function being recently intensively studied in the literature. We also
present the concept of robustness tolerances of a single cost vector. The tolerance is defined as the max-
imum level of perturbation of the cost vector which does not destroy the solution robustness. We present
formulae allowing the calculation of the robustness tolerance obtained for some initial costs. The results
are illustrated with several numerical examples.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

While solving practical optimization problems, it is necessary to
take into account various kinds of uncertainty due to lack of input
data, inadequacy of mathematical models to real processes, round-
ing off, calculating errors, etc. It is known that in many cases initial
data as a link between a reality and a model cannot be defined
explicitly. The initial data is defined with a certain error, generally
depend on many parameters and require to be specified during the
problem solving process. In practice any problem cannot be prop-
erly posed and solved without at least implicit use of the results of
stability analysis and related issues of parametric analysis. There-
fore widespread use of discrete optimization models in the last
decades inspired many specialists to investigate various aspects
of ill-posed problems theory and, in particular, the stability issues.

The implications of enhanced optimization methods have in
some areas been lead to the situation that optimal or near-optimal
solutions have become ‘‘too good’’. For example, in design of a
communication network, a network configuration can now be
made so good (with respect to the original objective optimization)
that there is hardly any possibility left in the network to accommo-
date for potential disruptions and possible contingency in terms of
e.g. routing delays. Similar problems are faced nowadays in many
other areas where deterministic models do not properly reflect
possible uncertainty of input parameters. In practice, it usually
leads to undesirable situations where optimality (sometimes even

feasibility) of solutions is very sensitive to some possible realiza-
tions of problem parameters. Thus, chasing for solution optimality,
we lose its robustness and vice versa.

As a consequence, two lines of research within the operations
research and mathematical optimization community have been
initiated:

� Post-optimal and parametric analysis investigate how an
optimal solution found behave in response to initial data
(problem parameters) changes. A general sensitivity and sta-
bility analysis methodology is used based on analyzing the
properties of the point-to-set mapping which specifies the
optimality principle of the problem. Such research methods
have been studied in great detail and covered e.g. in the liter-
ature on optimization problems with a continuous set of fea-
sible solutions. Numerous articles are devoted to analysis of
conditions when a problem solution possesses a certain prop-
erty of invariance to the problem parameters perturbations
(see, e.g. [10,31,37,38]).

� Robust optimization – instead of producing an optimal solu-
tion for a normal situation, which is described by determinis-
tic models but rarely occurs in practice, and where recovery
to optimality can be complicated, the aim is to produce solu-
tions that optimize an additionally constructed objective. The
objective must assure that the optimal solution will remain
feasible under worst case realization of uncertain problem
input parameters. Worst-case optimization is also known as
robust optimization, and optimal solutions of worst case opti-
mization are often referred to as robust solutions (see e.g.
[15]).
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The main drawback of all classical single objective models is
that they do not take into account the real multiple criteria nature
of real-life problems. It is well-known that under multiobjective
framework a solution which is optimal with respect to one single
objective might be arbitrarily bad with respect to the others and
thus will be unacceptable for a decision maker. Thus, many prob-
lems arising in optimization, management and decision making
should be ultimately considered under multicriteria framework
due to existing of several conflicting goals or interests. Therefore
recent interest of applied mathematicians and operations research
scientists in multicriteria optimization problems keeps very high.
It is confirmed by the intensive publishing activity (see e.g. mono-
graphs [8,23,36] and bibliography [9]).

The main difficulty while studying stability of discrete optimi-
zation problems is discrete models complexity, because even small
changes of initial data make a model behave in an unpredictable
manner. There are a lot of papers (see e.g. [4,11,12,16,33–35]) de-
voted to analysis of scalar and vector (multicriteria) discrete opti-
mization problems sensitivity to parameters perturbations.

The present work continues investigations of different aspects
of sensitivity analysis for different types of discrete optimization
problems with various partial criteria and optimality principles
(see e.g. [5–7,20,22,27,28]). We consider a multiobjective Boolean
linear programming problem with a finite number of alternatives
in which initial coefficients (costs) of linear payoff functions are
subject to perturbations. We define robust solution as a feasible
solution which for a given set of realizations of uncertain parame-
ters guarantees the minimum value of the worst-case relative re-
gret among all feasible solutions. For the Pareto optimality
principle, an appropriate definition of the worst-case relative re-
gret is specified. We show that this definition is closely related to
the concept of accuracy function which has been recently inten-
sively studied in the literature (see e.g. [17,20,28]). We also present
the concept of robustness tolerance of a single cost vector, which is
defined as the maximum level of perturbation of the cost vector
which does not destroy the solution robustness. In this paper we
present formulae which allow calculating the robustness toler-
ances obtained for some initial costs. We illustrate the results with
several numerical examples.

The paper is organized as follows. In Section 2 we formulate the
problem in details and define basic Pareto optimality principle. In
Section 3 we give a short excursus into the topic of robust optimiza-
tion and define an appropriate robustness measure. Section 4 is de-
voted to the concept of accuracy function as a tool of post-optimal
analysis which is used to describe the behavior of optimal solution
under uncertainty of initial problem data. We specify analytical
expression to calculating accuracy function for the chosen optimal-
ity principle. We also show that accuracy functions can straightfor-
ward be used to analyze solution robustness. In Section 5, we focus
on analyzing the case when only one vector cost is uncertain. We
present formulae which allow calculating the robustness toler-
ances. The theoretical results presented in Section 5 are illustrated
with numerical examples given in Section 6. Some concluding
remarks and open problems are summarized in Section 7.

2. Problem formulation

We consider a generic programming problem of dimension
m P 2 with a finite set of alternatives (feasible solutions) encoded
by means of Boolean variables xj, j 2 Nm = {1, 2, . . . , m}. The set of
all feasible solutions X is generally defined as a subset of the Carte-
sian product over all sets of possible realizations of the decision
variables

X �
Y
j2Nm

Xj ¼ f0;1gm
:

Observe that now – formally – X is a subset of the set of all binary
m-tuples. We also assume that there exists at least one j with xj = 1.
Thus, 0(m) = (0, 0, . . . , 0)T R X. A vector of objective functions:

pðC; xÞ ¼ ðp1ðC; xÞ; . . . ; pnðC; xÞÞ
T

consists of individual (partial) objectives pi(C, x), which are defined
as linear functions on the set of solutions X:

piðC; xÞ ¼ Cix:

Here for every i 2 Nn, Ci is ith row of matrix C ¼ ½cij� 2 Rn�m
þ ;

x ¼ ðx1; x2; . . . ; xmÞT ; xj 2 Xj; j 2 Nm. Note that for each i 2 Nn, the indi-
vidual objective pi(C, x) depends on solution x, that is on realization
of all the decision variables xj, j 2 Nm. Thus, an image set PP(C, X) is
the following:

PPðC;XÞ ¼ fpðC; xÞ : x 2 Xg:

The problem consists in simultaneous minimization of the individ-
ual objective functions given some original cost matrix C. We will
call any such problem a problem with the matrix C. Here we give
a short example illustrating the real situation where this particular
model can appear. Assume we have m households located in differ-
ent areas. The households decide about making a joint pipeline or
some other sort of shared resource through the areas. Every house-
hold has own costs as well as costs related to the participation of
the other householders in the project. There are also some restric-
tions which prohibits certain combination of households to take
part in the project simultaneously. Then this situation can be inter-
preted as the combinatorial model which was described above. It is
clear that many well-known combinatorial optimization problems
such as shortest path, minimum spanning tree, traveling salesman
and network flow problems, can generally fit the combinational
model considered.

Now we formulate a classical definition of optimal principle
used within multiple objective environment. A solution x⁄ 2 X is
called Pareto optimal (see e.g. [30]) in the problem with matrix
C if there exists no solution x 2 X such that pi(C,x) 6 pi(C,x⁄) for all
i 2 Nn, and pi(C, x) < pi(C, x⁄) for at least one i 2 Nn. For the problem
with matrix C, denote Pn(C) the set of Pareto optimal solutions.

3. Robust deviation

One of the most interesting branches of combinatorial optimiza-
tion and mathematical programming that has emerged over the
past 20–30 years is robust optimization. Since the early 1970s there
has been an increasing interest in the use of robust optimization
models. The theory of robustness deals with uncertainty of problem
parameters. The presence of such parameters in optimization mod-
els is caused by inaccuracy of initial data, non-adequacy of models
to real processes, errors of numerical methods, errors of rounding
off and other factors. So it appears to be important to identify clas-
ses of models and their solutions which play against the worst-case
(in some sense) realization of input parameters. It is commonly
accepted fact nowadays that any optimization problem arising in
practice can hardly be adequately formulated and solved without
usage of results of the theory of robustness.

Authors of most papers devoted to robust optimization attempt
to answer to the following closely related questions: How can one
represent uncertainty? What is a robust solution? What could be a
proper robustness measure? How to calculate robust solutions?
How to interpret worst case realization under uncertainty? and
many others. Multiple various research approaches were origi-
nated when those questions were scrutinized under different
frameworks. Bibliographical analysis provides us with a list of
contributors who proposed several main avenues in the theory of
robustness:
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