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a b s t r a c t

The accessibility arc upgrading problem (AAUP) is a network upgrading problem that arises in real-life
decision processes such as rural network planning. In this paper, we propose a linear integer program-
ming formulation and two solution approaches for this problem. The first approach is based on the
knapsack problem and uses the knowledge gathered from an analytical study of some special cases of
the AAUP. The second approach is a variable neighbourhood search with strategic oscillation. The excel-
lent performance of both approaches is demonstrated using a large set of randomly generated instances.
Finally, we stress the importance of a proper allocation of scarce resources in accessibility improvement.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Accessibility is formally defined by Donnges (2003) as the
degree of difficulty people or communities have in accessing
locations for satisfying their basic social and economic needs. This
concept has been recognised to play an important role in the qual-
ity of life as well as the potential for development of communities
and regions. The road network is one of the main elements that
contributes to the accessibility. This is particularly true in rural
areas of lesser-developed countries, where the road network
ensures the accessibility to the economic and social infrastructure
and to facilities, such as hospitals, usually located in regional
centres or in more developed cities. In this paper, we study the
accessibility arc upgrading problem (AAUP), a network upgrading
problem in which resources have to be allocated in order to
improve the accessibility to a set of vertices in a network. In the
domain of rural road network planning, this problem arises when
allocating resources to upgrade roads of a rural transport network,
in order to improve the access that communities in small villages
have to regional centres. We proceed by giving a precise descrip-
tion of this problem.

The AAUP can be described as follows: Let G ¼ ðV; EÞ be a direc-
ted connected graph in which the vertex set V is partitioned into
two different sets V1 and V2. Vertices in V1 are called centres, while
vertices in V2 are called regular vertices. Each arc e in E has a cur-
rent level and a set of possible upgrading levels. The level of an arc
determines the time required to traverse it. An upgrading cost is

incurred when improving an arc from its current level to a specific
upgrading level. There is a total budget B to upgrade the level of
some arcs. For each vertex j in V2, a weight wj (e.g., number of
inhabitants) is given. We define as measure of the accessibility of
regular vertex j the travel time from j to the closest centre i in
V1. An upgrading strategy specifies a set of arcs to be upgraded
and the level to which each of them has to be improved. The objec-
tive is to find an upgrading strategy that does not exceed the bud-
get B and minimises the weighted sum of the accessibility
measures, i.e., the weighted sum of the times required to travel
from each vertex j in V2 to its nearest centre i in V1.

The rest of this paper is structured as follows. In Section 2, we
propose a linear integer programming formulation of the AAUP
problem. Section 3 reviews the literature, and, in Section 4, we ana-
lyse special cases. Section 5 proposes heuristic methods for the
AAUP, and, in Section 6, we test these methods on randomly gen-
erated instances. Section 7 discusses the potential practical impact
of the AAUP. Finally, Section 8 summarises the main contributions
of this work and highlights some opportunities for future research
on this topic.

2. Mathematical formulation

Based on the mathematical formulation described in Campbell
and Lowe (2006), the AAUP can be formulated as a non-linear bin-
ary programming model, as shown by Maya Duque and Sörensen
(2011). In this paper, we propose an alternative formulation in
which the AAUP is defined as a special case of a more general
problem called budget constrained minimum cost flow problem
(BC-MCFP).

0377-2217/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2012.09.005

⇑ Corresponding author. Address: University of Antwerp, Stadscampus S.B. 513,
Prinsstraat 13, 2000 Antwerp, Belgium. Tel.: +32 32654061; fax: +32 32654901.

E-mail address: pmayaduque@gmail.com (P.A. Maya Duque).

European Journal of Operational Research 224 (2013) 458–465

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://dx.doi.org/10.1016/j.ejor.2012.09.005
mailto:pmayaduque@gmail.com
http://dx.doi.org/10.1016/j.ejor.2012.09.005
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


In the BC-MCFP, a given amount of flow has to be sent from a set
of supply vertices or sources, through the arcs of a network, to a set
of demand vertices or sinks. For each existing arc in the network,
there is set of possible upgrading levels. Therefore, for each exist-
ing arc, we define one new arc per possible upgrading level
connecting the same pair of vertices. Thus, in the BC-MCFP formu-
lation, E represents the augmented set of arcs that contains all the
original arcs and the arcs generated for each possible upgrading
level. For each arc in E, there is a cost per unit of flow, and a fixed
cost associated with the use of the arc. In our particular setting of
the BC-MCFP, there is no fixed cost for using an arc at its lowest
level, but that cost increases with the upgrading level. The cost
per unit of flow decreases as the arc is upgraded. The problem is
to find a minimum cost flow, such that the sum of the fixed costs
incurred by using some of the arcs at an upgraded level is limited
to a fixed budget. Basically, this problem is a minimum cost flow
problem that involves an additional set of decision variables
related to the upgrading decisions.

Consider the variable xe which is equal to the flow over arc e,
and a binary variable ye which is equal to 1 if the arc e is used,
and 0 otherwise. Let d+(i) and d�(i) be the forward and backward
stars of vertex i, respectively. Furthermore, let parameter di denote
the demand or supply in vertex i, and let pe and ce represent the
fixed cost of using arc e, and the cost per unit of flow over arc e,
respectively. Note that di is positive for supply vertices and nega-
tive for demand vertices. A formulation for the BC-MCFP is as
follows:

min
X

e2E
cexe ð1Þ

s:t:
X

e2dþðiÞ

xe �
X

e2d�ðiÞ
xe ¼ di 8i 2 V ð2Þ

xe 6 Mye 8e 2 E ð3Þ
X

e2E
peye 6 B ð4Þ

X

e:e¼ði;jÞ
ye 6 1 8i; j 2 V : ði; jÞ 2 E ð5Þ

0 6 xe 6 ae 8e 2 E ð6Þ
ye 2 f0;1g 8e 2 E ð7Þ

The objective function (1) minimises the total flow cost. The
constraints in (2) ensure that the demand for each sink vertex j
is satisfied and that the supply of each source i is not exceeded.
The constraints in (3), where M denotes a large number, enforce
that flow can only pass through arcs that have been selected for
use. Constraint (4) imposes an upper bound B on the total upgrad-
ing cost. The constraints in (5) ensure that at most one arc connect-
ing each pair of vertices is chosen. Note that these constraints are
not needed when the arcs are uncapacitated. Finally, constraints
(6) and (7) define the type and the bounds for the decision vari-
ables. In constraints (6), ae represents the capacity of arc e.

We now show that the AAUP is a special case of the BC-MCFP.
Consider an instance of the AAUP as described in Section 1. Each
regular vertex acts as a sink, while each centre is a supply vertex.
The value of dj for a regular vertex j is set to �wj, while the value
of di for each centre i is set to the total demand on the network
(i.e., the sum of the wj values for all j in V2). Then, we create one
dummy demand vertex connected to each of the centres. The fixed
cost and cost per unit of flow for the arcs connecting the dummy
vertex and the centres are set to 0, while the di value of the dummy
vertex is set to �ðjV1j � 1Þ

P
j2V2

wj. Solving the resulting instance of
the BC-MCFP yields a solution for the corresponding instance of the
AAUP. Fig. 1 shows the transformation of an AAUP into a BC-MCFP,
schematically.

In Fig. 1, the vertices c1, c2 and c3 are the centres, while the ver-
tices 1–19 represent the regular vertices. The solid lines corre-
spond to existing arcs of the network, while the dashed lines are
possible upgrading levels of the existing arcs. The vertex labelled
with an asterisk represents the dummy demand vertex and the
grey dotted lines are the arcs that connect the dummy vertex to
the centres.

3. Literature review

In this section, we review the literature that is relevant for the
AAUP. We first concentrate on the network upgrading problem.
Afterwards, we extend the review to consider the accessibility fac-
tor within the upgrading network problem.

Although several authors have addressed network upgrading
problems, the literature is not as extensive as it is for other prob-
lems within the domain of network design. Krumke et al. (1998)
distinguish two kinds of upgrading problems depending on
whether the focus is on upgrading the arcs or upgrading the verti-
ces. The authors propose a bi-objective approach for both types of
problems. In that approach, a sub-class of graph S is considered
(e.g., the set of spanning trees) and a budget or target value is de-
fined for the first objective. The goal is to find a network within the
fixed budget that belongs to S and minimises the second objective.
Results on the complexity of a number of node-based and
edge-based upgrading problems are presented. In particular, the
case in which the objectives are defined as minimising the cost
of improving the network and minimising the total length of the
minimum spanning tree is shown to be NP-hard for trees and gen-
eral networks. Drangmeister et al. (1998) study a related problem
that looks for an optimal reduction strategy (i.e., shortening some
of the edges) such that a budget constraint is satisfied and the total
length of a minimum spanning tree in the modified network is
minimised. Some NP-hardness results, even for simple classes of
graphs, are presented, as well as some approximation algorithms.

Campbell and Lowe (2006) address two q-upgrading arc prob-
lems that involve finding the best q arcs to upgrade in a network.
The q-upgrading arc diameter problem requires finding q arcs to
upgrade such that the travel time on the maximum shortest path
between any origin–destination pair (i.e., the diameter of the net-
work) is minimised. The q-upgrading arc radius problem requires
finding q arcs to upgrade and locating the vertex centre, i.e., the
node for which the maximum shortest path to the other nodes in
the network (i.e., the radius of the network) is minimised. The
two problems are shown to be NP-hard on general graphs, but
polynomially solvable on trees. A variant of the problems, which
involves a budget constraint, is also studied. It is shown that these

Fig. 1. Transformation of the AAUP into a BC-MCFP.
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