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a b s t r a c t

In this work we consider the problem of training a linear classifier by assuming that the number of data is
huge (in particular, data may be larger than the memory capacity). We propose to adopt a linear least-
squares formulation of the problem and an incremental recursive algorithm which requires to store a
square matrix (whose dimension is equal to the number of features of the data). The algorithm (very sim-
ple to implement) converges to the solution using each training data once, so that it effectively handles
possible memory issues and is a viable method for linear large scale classification and for real time appli-
cations, provided that the number of features of the data is not too large (say of the order of thousands).
The extensive computational experiments show that the proposed algorithm is at least competitive with
the state-of-the-art algorithms for large scale linear classification.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning models are useful tools for many real life
problems and their construction, based on a set of data called the
training set, requires very often the solution of optimization prob-
lems (as deeply examined in [4,2,18], this latter issue represents
the strong interaction of machine learning and mathematical
programming).

In classification the training data are labeled, that is, each in-
stance is associated to one of two or more classes. Starting with
the training set, the machine learning task for classification is to
construct a predictive model able to correctly predict as possible
the class of new instances (generalization capability).

Support Vector Machines (SVMs) are widely used as a simple and
efficient tool for linear and nonlinear classification (as well as for
regression problems). The basic training principle of SVM, motivated
by the statistical learning theory [23], is that the expected classifica-
tion error for unseen test samples is minimized, so that SVM define
good predictive models. The design of efficient and reliable optimi-
zation methods for SVM training is an active and dynamic research
area as proved by many papers devoted to the topic and published
in the last decade (see, e.g., [1,14,13,22,16,17,7,19,12]).

In this work we focus on linear classification, which is a useful
tool in many real applications and represents a very active topic
(see, e.g., [9,24,20]). The aim is to develop fast optimization algo-

rithms for training linear classifiers on large scale data (in particu-
lar, data may be larger than the memory capacity).

Given a finite set (the training set) of data (not necessarily lin-
early separable)

TS ¼ fðui;diÞ : ui 2 Rn; di 2 f�1;1g; i ¼ 1; . . . ;mg;

where the label di denotes the class of the vector ui, we consider the
problem of training a linear machine defined by the decision
function.

yðuÞ ¼ sgnðwT uþ hÞ; ð1Þ

where u 2 Rn is the input vector, w 2 Rn is the vector of weights,
h 2 R is the threshold, sgn : R! f�1;1g is the sign function such
that

sgnðtÞ ¼
1 t P 0
�1 t < 0

�
We assume that the number m of training data is huge.

The standard SVM linear classifier is obtained by computing the
solution of the problem

min
w2Rn ;h2R;n2Rm

1
2 kwk

2 þ C
Xm

i¼1

ni

diðwT ui þ hÞP 1� ni i ¼ 1; . . . ;m

ni P 0 i ¼ 1; . . . ;m;

ð2Þ

where k � kis the Euclidean norm. The term
Pm

i¼1n
i is an upper bound

on the training error. The parameter C > 0 trades off margin size (re-
lated to the generalization capability) and training error, and is usu-
ally determined by standard cross-validation tuning procedures.
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Robustness with respect to the parameter C is a very desirable prop-
erty that, as reported in Section 4, the classifier proposed in this
work seems to possess.

Problem (2), usually referred as primal problem, is equivalent to
a non-smooth unconstrained optimization problem of the form

min
w2Rn ;h2R

1
2
kwk2 þ C

Xm

i¼1

maxf0;1� diðwT ui þ hÞg ð3Þ

Using Lagrangian duality, we have that the dual problem of (2)
is a convex quadratic problem (whose dimension is equal to the
number m of training data) with one linear equality constraint
and box constraints. There exist both (primal) algorithms for solv-
ing Problem (3) and (dual) algorithms for solving its dual.

A more general primal form is

min
w2Rl ;h2R

qðw; hÞ þ C
Xm

i¼1

Niðw; h;ui;diÞ; ð4Þ

where q(w,h) is the regularization term and Ni(w, ui, yi, h) is the loss
function associated with the observation (ui, di). There exist algo-
rithms (see, e.g., [6,15,20]) which refer to problem (4) and others
(see, e.g., [10,25]) for solving the corresponding dual. For what con-
cerns the loss function Ni(w, xi, yi, b), two common forms are

Niðw; h;ui; diÞ ¼maxf0;1� diðwT ui þ hÞg
Niðw; h;ui; diÞ ¼maxf0;1� diðwT ui þ hÞg2

:

For the regularization term q(�) standard choices are the following

qðw; bÞ ¼ kwk2
2

qðw; bÞ ¼ kwk1:

We are assuming that the number m of training data is so huge that
either the whole training set cannot be stored in the computer
memory or, in the case that memory is enough, loading data to
memory can be too expensive. Therefore, we focus on incremental
methods which use some observations at a time rather than using
the whole training set. We address the reader to [25] for the state
of art concerning linear large-scale classification, we only cite two
efficient optimization methods for large scale linear classification
proposed in [11,5], respectively. The former is a batch method using
the whole training set, the latter is based on an incremental strat-
egy. Both methods, as the one proposed in this work are able to
solve problems with a huge number of observations having a rela-
tively small number of features.

In this work we introduce a linear classifier obtained by solving
a linear least squares problem corresponding to a primal formula-
tion of the form (4), and we adopt an incremental recursive least-
squares algorithm as training algorithm. The results of the exten-
sive computational experiments reported in the paper show that
the presented methodology (very simple to implement) may be
an effective tool for large scale linear classification whenever the
number n of features is not huge (say n of the order of thousands).

The paper is organized as follows. In Section 2 we recall the
structure of a recursive linear least-squares algorithm. In Section
3 we present the linear classifier and the training algorithm. In Sec-
tion 4 we report the results of extensive computational experi-
ments performed on large dimensional classification problems
and we show the comparison with many other linear classifiers
and training algorithms.

2. Recursive linear least-squares algorithm

Let us consider the linear least-squares problem

min
x2Rn
kAkx� bkk2

; ð5Þ

where Ak 2 Rk�n with rank (Ak) = n, bk 2 Rk. The solution xk of (5)
satisfies the normal equations

AT
k Akx ¼ AT

k bk:

Assume that a new equation

aT
kþ1x ¼ bkþ1

is added, so that the new problem to be solved is

min
x2Rn
kAkþ1x� bkþ1k2

; ð6Þ

where

Akþ1 ¼
Ak

aT
kþ1

" #
bkþ1 ¼

bk

bkþ1

� �
:

Letting H�1
i ¼ AT

i Ai

� ��1
and denoting by xk+1 the solution of (6), we

have the recursive updating formulae (see, e.g., [3])

xkþ1 ¼ xk þ vkþ1ðbkþ1 � aT
kþ1xkÞ; ð7Þ

where

vkþ1 ¼ H�1
kþ1akþ1 ð8Þ

and

H�1
kþ1 ¼ H�1

k �
sksT

k

1þ aT
kþ1sk

; sk ¼ H�1
k akþ1: ð9Þ

Eqs. (7)–(9) allow us to define an incremental algorithm for a linear
least-squares problem

min
x2Rn
kAx� bk2

;

where A 2 Rm�n and b 2 Rm with m > n and rank(A) = n. The algo-
rithm requires to store a positive definite n � n matrix, and at each
iteration updates the estimate of the solution using a single obser-
vation. Once initialized H�1

0 , the algorithm requires exactly m � n
iterations for determining the solution of the problem. In Section
3 we will present the training problem of a linear classifier formu-
lated as a linear least-squares problem and the incremental training
algorithm, which can be conveniently adopted for solving large-
scale problems.

3. The linear classifier and the training algorithm

Consider the problem of designing a linear classifier using a gi-
ven training set

TS ¼ fðui;diÞ : ui 2 Rn; di 2 f�1;1g; i ¼ 1; . . . ;mg:

As introduced in Section 1, a standard linear SVM can be trained by
solving the unconstrained non-smooth optimization problem (3).
Note that the classification constraints are imposed by means of lin-
ear inequalities, and transferred by a penalty term in the objective
function.

We consider here the regularized least-squares formulation
(see, e.g., [21] as introduction to least-squares Support Vector Ma-
chines). In particular, the classification constraints, whose violation
must be penalized, are defined by linear equalities, that is,

wT ui þ h ¼ di i ¼ 1; . . . ;m;

so that, the linear least-squares formulation corresponding to (4)
becomes

min
w2Rn ;h2R

1
2
kwk2 þ C

Xm

i¼1

ðwT ui þ h� diÞ2: ð10Þ
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