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a b s t r a c t

We consider a manufacturer’s stochastic production/inventory problem under periodic review and pres-
ent methods for safety stock determination to cope with uncertainties that are caused by stochastic
demand and different types of yield randomness. Following well-proven inventory control concepts for
this problem type, we focus on a critical stock policy with a linear order release rule. A central parameter
of this type of policy is given by the safety stock value. When non-zero manufacturing lead times are
taken into account in the random yield context, it turns out that safety stocks have to be determined that
vary from period to period. We present a simple approach for calculating these dynamic safety stocks for
different yield models. Additionally, we suggest approaches for determining appropriate static safety
stocks that are easier to apply in practice. In a simulation study we investigate the performance of the
proposed safety stock variants.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In environments where not only customer demand is stochastic
but also production is exposed to random yields, inventory control
becomes an extremely challenging task. Yield uncertainties fre-
quently occur in the agricultural sector or in the chemical, elec-
tronic and mechanical manufacturing industries (see Gurnani
et al., 2000; Jones et al., 2001; Kazaz, 2004). Here, random supply
can appear due to different reasons such as weather conditions,
production process risks or imperfect input material. Semiconduc-
tor manufacturing in the electronic goods industry is an especially
striking example where high yield losses of about 80% on average
are met (see Nahmias, 2009, p. 392). More recently, yield problems
gained also relevance in the remanufacturing industry where the
output of disassembly operations often is highly uncertain because
of limited knowledge of the condition of used products (see Ilgin
and Gupta, 2010; Panagiotidou et al., in press).

The main challenge for production and inventory planning in
this context is that yield losses often are hard to predict so that
their variances are too high to be ignored. To cope with the influ-
ence of risks that concern demand and yield variability, two con-
trol parameters can be used in an MRP-type production control
system: a safety stock and a yield inflation factor that accounts
for yield losses (see Inderfurth, 2009; Nahmias, 2009, p. 392;
Vollmann et al., 2005, p. 485). In general, it is not necessary to

implement safety stocks for all items of a multi-level MRP-system
since a safety stock for the final product automatically increases
the requirements for products on the lower stages (see Nahmias,
2009, p. 388). However, for items with significantly variable yield
it is strongly recommended to install safety stocks (see Silver
et al., 1998, p. 613).

Scientific contributions which deal with theory-based determi-
nation of control parameters originate from research in the field of
stochastic inventory control problems. In previous articles on opti-
mal inventory control under stochastic yields, considering a single-
item inventory problem under periodic review, several authors
(see Gerchak et al., 1988; Henig and Gerchak, 1990) have analyzed
that the optimal policy for cost minimization results in a critical
stock (CS) rule in combination with a non-linear order release func-
tion. This rule prescribes that an order is only released in a specific
period if the inventory level does not exceed CS. If the inventory is
lower, the order quantity to be released is increasing with the size
of the CS undershoot. The order quantity, however, is not propor-
tional to the difference between CS and current stock level. This
type of order release function, however, is cumbersome to calcu-
late and difficult to apply in practice. In contrast, the way how de-
mand and yield risks are handled in practical MRP systems results
in applying a CS-rule with a linear order release function where the
CS is composed of a safety stock and the expected demand during
lead time and control period (see Inderfurth, 2009). So it is quite
evident that several attempts have been made to develop powerful
linear approximations to the non-linear order rule.

Approaches by Henig and Gerchak (1990) and Zipkin (2000)
which solely focused on coping with yield randomness by
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appropriately inflating the order size did not turn out to be suffi-
ciently successful. In contrast, procedures that tried to incorporate
the yield risk in an appropriate manner in the CS determination for
a linear rule showed a much better performance. In this context,
the best performance is reached by a procedure developed by
Bollapragada and Morton (1999) who present an advanced linear
heuristic for the multi-period case under zero production lead time
and linear costs for production, stock-keeping, and backlogging.
Following this approach the CS is calculated as a simple closed-
form expression from an extended newsvendor analysis where
the yield risk is also taken into account. The expected yield loss
is incorporated by inflating the stock deviation from CS by a yield
inflation factor (denoted by YIF) which is simply chosen as the re-
ciprocal of the mean yield rate. In a numerical study, using a dy-
namic programming procedure, Bollapragada and Morton
compare the results of the linear heuristic with the optimal non-
linear order release rule and show that in terms of cost deviation
their heuristic performs very well in most instances. Inderfurth
and Transchel (2007) detect an error in the analytic procedure of
Bollapragada and Morton that is responsible for a steady deteriora-
tion of their heuristic for parameter constellations which corre-
spond to increasing service levels. In a recent study, Huh and
Nagarajan (2010) revisit the linear control rule problem with zero
lead time as addressed by Bollapragada and Morton and develop a
numerical approach for calculating optimal values of CS for a given
YIF. They prove that for any given YIF the average costs are convex
in CS and exploit this property in deriving a fairly simple calcula-
tion procedure. They also compare the performance of different
methods for determining the YIF suggested in literature by a com-
prehensive simulation study.

The only approaches for developing linear control rules with
non-zero lead times are found in Inderfurth and Gotzel (2004)
and Inderfurth (2009). Using a fixed YIF, but a time-dependent
(i.e. dynamic) CS, this work extends the parameter determination
approach in Bollapragada and Morton to cases with arbitrary lead
times. The main idea is to determine appropriate safety stocks as
parameter for the linear control rule that enable a quite good
approximation to the non-linear order release function, even in
cases with positive lead time and outstanding past orders which
generate an additional yield risk. This stream of research is further
extended in this paper as the multiple-period lead time case is reg-
ularly met in practice, particularly in an MRP environment. One
extension refers to the development and performance analysis of
static instead of dynamic safety stocks in a multi-period lead time
environment. As a second extension additional types of yield ran-
domness are incorporated in the analysis of control rule parame-
ters. This is because up to now all contributions only referred to
production environments where the process yield is stochastically
proportional to the production input quantity.

In our study we consider both arbitrary lead times and two
additional well-known types of yield randomness (see Yano and
Lee, 1995), namely binomial and interrupted geometric yield. The
yield models under consideration mainly differ in the level of cor-
relation existing for individual unit yields within a single produc-
tion batch. We show how for different models safety stocks can
easily be determined following the same theoretical concept when
using a linear order release rule with a YIF that is the reciprocal of
the mean yield rate. We show that in case of non-zero lead time
even under stationary conditions it is straight-forward that safety
stocks will vary from period to period. In order to facilitate appli-
cability of safety stock usage and facilitate smoothed production
orders, we additionally present alternative approaches of how
these dynamic safety stocks can be transformed into static ones.

The rest of our paper is organized as follows. In Section 2 the
linear control rule applied for order release is formalized and the
role of safety stock within this rule is clarified. Section 3 introduces

different models of stochastic yield processes, while Section 4 pre-
sents closed-form safety stock expressions for each type of random
yield. In Section 5 the different safety stock formulas for each con-
sidered type of yield randomness are compared and evaluated with
respect to their relative performance. Section 6 concludes this con-
tribution with some managerial insights and gives a brief outlook
on future research.

2. Linear control rule

In this section we present details of the linear control rule
which is used to cope with demand and yield risks in the multi-
period infinite-horizon case and with arbitrary lead times. Like in
Bollapragada and Morton (1999) and in Huh and Nagarajan
(2010), the basic idea is that this rule is applied in the context of
a problem environment with stationary stochastic demand and
yield processes in order to minimize the long-run expected holding
and backlogging costs. Following a linear order release rule under
arbitrary lead times means that in each period the current net
inventory and open orders are combined to an appropriate inven-
tory position which is compared to a critical stock level. In the case
of a stock level undershoot, this difference is magnified by a yield
inflation factor and, in this enlarged size, represents the next order
quantity.

For the formal description of this linear control rule under gen-
eral types of a stochastic production yield the following notation is
used:

Qt released order quantity in period t
CSt critical stock for period t (potentially time-dependent)
xt inventory position, expected in period t
SSTt safety stock for period t (potentially time-dependent)
YIF yield inflation factor
k production lead timeeY ðQÞ random yield (number of good units from a production

batch size Q)
YðQÞ expected yield ð¼ E½eY ðQÞ�ÞeZ random yield rate, defined as eY ðQÞ=QeDt i.i.d. random demand in period t with expectation lD

and variance r2
D

a critical cost ratio (depending on holding and
backlogging cost)

Following a critical stock rule with a linear order release mech-
anism characterized by the parameters CSt and YIF, an order Qt in
period t depends on the expected inventory position xt in the fol-
lowing way:

QtðxtÞ ¼maxfðCSt � xtÞ � YIF; 0g ð1Þ

Like in Bollapragada and Morton (1999), we fix the yield infla-
tion factor, YIF, in such a way that it just compensates for the ex-
pected yield loss of an order and does not depend on the
variance of the yield process. Like demand risk, this yield variabil-
ity is completely coped with by the critical stock, CSt. Different
from standard approaches, parameter CSt is allowed to be time-
dependent in a stationary model environment because under lead
times of multiple periods it has to reflect that the current yield risk
from open production orders can change from period to period
along with the distribution and size of the past orders. In this con-
text, it has to be noted that under stochastic yield the inventory po-
sition cannot be defined in the traditional way as net inventory
plus sum of outstanding orders, since the in-transit inventory from
these orders is random. In order to maintain the traditional ap-
proach, it is straightforward to replace the random yield by the
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