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algorithms for discrete-time Markov systems to continuous time semi-Markov models. In particular, they
require less storage than the algorithm in the literature.
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1. Introduction

The sample-path-based gradient estimation algorithms have
been widely studied for Markov decision processes (MDPs). The
early studies about perturbation analysis (PA) (Ho and Cao, 1991,
1983) and score function or likelihood-ratio method (Aleksandrov
et al,, 1968; Rubinstein, 1969) showed that the performance gradi-
ent can be obtained by analyzing a single sample path of special pro-
cesses. Many efficient algorithms have been developed therein. The
PA idea about performance gradient estimation was extended to
Markov systems in Cao et al. (1996) and Cao and Chen (1997). More-
over, extensions of the likelihood-ratio method to regenerative pro-
cesses was given in Glynn (1990) and Glynn and L’Ecuyer (1995).
REINFORCE algorithm (Williams, 1992) provided a gradient-based
algorithm to optimize average reward for partially observable Mar-
kov systems. A simulation-based gradient estimation algorithm was
presented in Marbach and Tsitsiklis (2001) for optimizing the aver-
age reward in a finite-state Markov reward process that depends on
a set of parameters. The gradient estimation algorithms with value
function approximation, e.g. VAPS (Value And Policy Search) algo-
rithm (Baird and Moore, 1998), actor-critic algorithm (Konda and
Tsitsiklis, 2003), attempt to combine the advantage of gradient esti-
mation and value function approximation. A GPOMDP (Gradient of
Partially Observable Markov Decision Process) algorithm (Baxter
and Bartlett, 2001) was proposed for (partially observable) Markov
systems with infinite-horizon average reward.

Recently, the extensions of gradient estimation algorithms to
Semi-Markov decision processes (SMDPs) have become the
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research focus. PA theory was extended to SMDPs and performance
sensitivity formulas were given in Cao (2003). A policy gradient
method for SMDPs with application to call admission control
(CAC) was introduced in Singh et al. (2007) and an actor-critic algo-
rithm applied to resource allocation was developed in Usaha and
Barria (2007). Our work is inspired by the work in Cao (2005).
The research results in Cao (2005) showed that a sensitivity formula
from PA plays an important role in the gradient estimation algo-
rithms for Markov decision processes (MDPs) and many gradient
estimation algorithms (Marbach and Tsitsiklis, 2001; Baxter and
Bartlett, 2001; Cao and Wan, 1998) for MDPs can be easily devel-
oped with the gradient formula. In this paper, we extend the results
in Cao (2005) to SMDPs with continuous time.

Our main contribution of this paper is to present a basic formula
for gradient estimation of SMDPs. In the earlier conference version
(Liand Cao, 2011), we provide a self-contained proof for this formula.
In this paper, we derive the formula by using the infinitesimal-gener-
ator based sensitivity formula in Cao (2003) and show the equiva-
lence between the basic formula and the infinitesimal-generator
based gradient formula. Based on this basic formula, we develop three
gradient estimation algorithms. These gradient estimation algo-
rithms naturally extend many gradient estimation algorithms for dis-
crete-time MDPs to continuous time semi-Markov models and
particularly these algorithms only need about half memory require-
ment of the algorithm that has appeared in Singh et al. (2007).

2. Semi-Markov decision process

Consider a SMDP (Puterman, 1994) on state space S = {s1,52, ...,
sk} with a finite action space denoted by A. Let 7o, T1,..., Tp, .- -,
with 79 =0, be the decision epochs and X,, n=0,1, 2, ..., denote
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the state at decision epoch 7,,. At each decision epoch 7, if the system
is in state X, =i € S, an action A, =a is taken from an available
action setA(i) C A according to the current policy. As a consequence
of choosing a, the next decision epoch occurs within t time units, and
the system state at that decision epoch equals j with probability
p(,tli,a), which means p(j, tli,a) = P(Xni1 =J, Thy1 — Tn < tXn =1,
A, = a). The probabilities p(j, t|i,a),i,j € S,a € A(i), are called semi-
Markov kernel. We refer to {Xo, Xi, ...} as an embedded
Markov chain of SMDP. Let p(j|i,a) denote the probability that the
embedded Markov chain occupies state j at the subsequent decision
epoch when ais chosen in state i at the current decision epoch. Then,
we have p(jli,a) = p(j, li,a). Let F(t|i,a) denote the probability that
the next decision epoch occurs within t time units after the current
decision epoch given that action a is chosen from A(i) in state i at the
current decision epochs. Then, we have

F(tli,a) = > p(,tli, a). (1)

jes

Between any two sequent decision epochs 7, and 7.1, the system
state may vary. The evolution process is called natural process, de-
noted by W, T, < s < T4+1. At each decision epoch 7, the system gen-
erates a fixed reward f{X,,,A,) and it accumulates additional rewards
at rate c(W;, Xy, A,) until 7,..1. Let 1(i,a) denote the expected reward
between two decision epochs, given that the system occupies state
i and action a is taken at the first decision epoch. Then, we have

"Tnil

ri,a) = f(i,a) +E{ /

v Tn

CWe X At =iA=a. (@)

For each i € S and a € A(i), define (i,a) by

T(i,a) = E{Th1 — TolXn =1,An =a} = / tF(dt)i, a), (3)
JOo

which denotes the expected length of time until the next decision epoch
given that action a is taken in state i at the current decision epoch.

In general, there are some parameters in the above expected
rewards, expected sojourn times and transition probabilities. These
parameters may come from a policy. For example, we consider a
class of stationary Markov policies IT,, parameterized by 6, where
0 is a tuning parameter vector. If u(60) € II,, then it chooses an ac-
tion a from A(i) with probability pu(ali,0) when state is ini e S at
any decision epoch. Thus, >, (ali,0) = 1. We assume that
u(ali,0),i e S,a € A(i) are differentiable with respect to 0. Natu-
rally, for a given 6, the SMDP evolves according to semi-Markov
kernel p(j, t|i, 0) = "o caq 14(ali, 0)p(j, tli,a),i,j € S, and the embed-
ded Markov chain evolves according to the transition probabilities

p(]|lv 0) = Z ,l,l(a‘l, G)PU\L aj,

acA(i)

ijes. (4)

Denote as P(0) the transition probability matrix of embedded
Markov chain, whose (i,j)th component is p(j|i, 6),i,j € S. Moreover,
the expected total reward and the expected length of time between
two decision epochs under policy u(0) € IT,,, are

Z,ua\zO (,a), (3)

acA(i)

> u(ali,0)t(i,a), (6)

acA(i)

and 1(i,0) =

respectively, given that the system occupies state i at the current
decision epoch. Let r(0) and 7(0) denote their corresponding column
vectors, respectively.

We assume that the embedded Markov chain is ergodic under
any 0. Let 7(0) = (n(s1,0), 7(s2,0), ..., n(sk 0)) denote the (row) vec-
tor representing the steady-state probability of embedded Markov
chain, then we have n(0)P(0) = n(0) and n(0)e = 1, where e denotes
a column vector whose all components are 1. Let o5 denote the

number of decision epochs up to time s. The infinite-horizon aver-
age-reward is defined as

(i, 0) = ;@%E{/ c(Ws,Xo,,Ag,)ds + fo,,

n=0

|x07}, vies. (7)

It has been shown (Puterman, 1994) that the average reward (7) is
independent of initial state i under the ergodic assumption and
equals

. __w(0)r(0)
Our goal is to estimate the gradient of average reward (8) with
respect to parameter vector 0 based on a single sample path of SMDP.

Vies. (8)

3. Performance gradient formula

In this section, on the basis of reviewing the results about per-
formance sensitivity of SMDPs (Cao, 2003, 2007), we present a per-
formance gradient formula for SMDPs under average-reward
performance.

For the SMDP in the above section, an infinitesimal generator
B(0) was defined in Cao (2003, 2007). Its (i,j)th component is
b(jli, 0) = =i [P(li, 0) — 9], where & is a function with é; =1 when
i = j, otherwise 0. Thus, the infinitesimal generator can be described
in vector form as follows:

B(0) = I'(0)[P(0) —1], 9)
where F(@) is a diagonal matrix with diagonal components
et ..,T(SKO and I is an identity matrix. Assume the parameter
vector 6 is perturbed to ¢, which corresponds to another policy
wu(0') and thus corresponds to another semi-Markov process. Based
on the infinitesimal generator in (9), the average-reward perfor-
mance difference under two different policies ()< II,, and
u(0") € I, can be given by the following formula (Cao, 2003),

n(0') = n(0) = p(0")[T'(0")r(0') — I'(0)r(0) + (B(0') — B(0))g(0)], (10)

where p(0') = (p(1,0'), ..., p(sk, 0)) is the steady-state distribution of
B(9), i.e., p(0)B(0)=0, p(¢)e=1, and g(0)=(g(1,0),...,8(5k0)) is
the performance potential satisfying the Poisson equation

B(0)g(0) = —I'(0)r(0) +n(0)e, (11)

where T denotes the transpose. Since the steady state distribution
p(0) of infinitesimal generator can be described by the steady state
distribution of embedded Markov chain as follows (Ross, 1996):

(i, 0)t(i, )
(@)@
then from (10), we have

n(0") = n(0)
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