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a b s t r a c t

This paper presents a basic formula for performance gradient estimation of semi-Markov decision pro-
cesses (SMDPs) under average-reward criterion. This formula directly follows from a sensitivity equation
in perturbation analysis. With this formula, we develop three sample-path-based gradient estimation algo-
rithms by using a single sample path. These algorithms naturally extend many gradient estimation
algorithms for discrete-time Markov systems to continuous time semi-Markov models. In particular, they
require less storage than the algorithm in the literature.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The sample-path-based gradient estimation algorithms have
been widely studied for Markov decision processes (MDPs). The
early studies about perturbation analysis (PA) (Ho and Cao, 1991,
1983) and score function or likelihood-ratio method (Aleksandrov
et al., 1968; Rubinstein, 1969) showed that the performance gradi-
ent can be obtained by analyzing a single sample path of special pro-
cesses. Many efficient algorithms have been developed therein. The
PA idea about performance gradient estimation was extended to
Markov systems in Cao et al. (1996) and Cao and Chen (1997). More-
over, extensions of the likelihood-ratio method to regenerative pro-
cesses was given in Glynn (1990) and Glynn and L’Ecuyer (1995).
REINFORCE algorithm (Williams, 1992) provided a gradient-based
algorithm to optimize average reward for partially observable Mar-
kov systems. A simulation-based gradient estimation algorithm was
presented in Marbach and Tsitsiklis (2001) for optimizing the aver-
age reward in a finite-state Markov reward process that depends on
a set of parameters. The gradient estimation algorithms with value
function approximation, e.g. VAPS (Value And Policy Search) algo-
rithm (Baird and Moore, 1998), actor-critic algorithm (Konda and
Tsitsiklis, 2003), attempt to combine the advantage of gradient esti-
mation and value function approximation. A GPOMDP (Gradient of
Partially Observable Markov Decision Process) algorithm (Baxter
and Bartlett, 2001) was proposed for (partially observable) Markov
systems with infinite-horizon average reward.

Recently, the extensions of gradient estimation algorithms to
Semi-Markov decision processes (SMDPs) have become the

research focus. PA theory was extended to SMDPs and performance
sensitivity formulas were given in Cao (2003). A policy gradient
method for SMDPs with application to call admission control
(CAC) was introduced in Singh et al. (2007) and an actor-critic algo-
rithm applied to resource allocation was developed in Usaha and
Barria (2007). Our work is inspired by the work in Cao (2005).
The research results in Cao (2005) showed that a sensitivity formula
from PA plays an important role in the gradient estimation algo-
rithms for Markov decision processes (MDPs) and many gradient
estimation algorithms (Marbach and Tsitsiklis, 2001; Baxter and
Bartlett, 2001; Cao and Wan, 1998) for MDPs can be easily devel-
oped with the gradient formula. In this paper, we extend the results
in Cao (2005) to SMDPs with continuous time.

Our main contribution of this paper is to present a basic formula
for gradient estimation of SMDPs. In the earlier conference version
(Li and Cao, 2011), we provide a self-contained proof for this formula.
In this paper, we derive the formula by using the infinitesimal-gener-
ator based sensitivity formula in Cao (2003) and show the equiva-
lence between the basic formula and the infinitesimal-generator
based gradient formula. Based on this basic formula, we develop three
gradient estimation algorithms. These gradient estimation algo-
rithms naturally extend many gradient estimation algorithms for dis-
crete-time MDPs to continuous time semi-Markov models and
particularly these algorithms only need about half memory require-
ment of the algorithm that has appeared in Singh et al. (2007).

2. Semi-Markov decision process

Consider a SMDP (Puterman, 1994) on state space S ¼ fs1; s2; . . . ;

sKg with a finite action space denoted by A. Let s0, s1, . . . , sn, . . . ,
with s0 = 0, be the decision epochs and Xn, n = 0, 1, 2, . . . , denote
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the state at decision epoch sn. At each decision epoch sn, if the system
is in state Xn ¼ i 2 S, an action An = a is taken from an available
action set AðiÞ � A according to the current policy. As a consequence
of choosing a, the next decision epoch occurs within t time units, and
the system state at that decision epoch equals j with probability
p(j, tji,a), which means pðj; tji; aÞ ¼ PðXnþ1 ¼ j; snþ1 � sn 6 tjXn ¼ i;
An ¼ aÞ. The probabilities pðj; tji; aÞ; i; j 2 S; a 2 AðiÞ, are called semi-
Markov kernel. We refer to {X0, X1, . . .} as an embedded
Markov chain of SMDP. Let p(jji,a) denote the probability that the
embedded Markov chain occupies state j at the subsequent decision
epoch when a is chosen in state i at the current decision epoch. Then,
we have p(jji,a) = p(j,1ji,a). Let F(tji,a) denote the probability that
the next decision epoch occurs within t time units after the current
decision epoch given that action a is chosen from A(i) in state i at the
current decision epochs. Then, we have

Fðtji; aÞ ¼
X
j2S

pðj; tji; aÞ: ð1Þ

Between any two sequent decision epochs sn and sn+1, the system
state may vary. The evolution process is called natural process, de-
noted by Ws, sn 6 s < sn+1. At each decision epoch sn, the system gen-
erates a fixed reward f(Xn,An) and it accumulates additional rewards
at rate c(Ws,Xn,An) until sn+1. Let r(i,a) denote the expected reward
between two decision epochs, given that the system occupies state
i and action a is taken at the first decision epoch. Then, we have

rði; aÞ ¼ f ði; aÞ þ E
Z snþ1

sn

cðWs;Xn;AnÞdsjXn ¼ i;An ¼ a
� �

: ð2Þ

For each i 2 S and a 2 A(i), define s(i,a) by

sði; aÞ ¼ Efsnþ1 � snjXn ¼ i;An ¼ ag ¼
Z 1

0
tFðdtji; aÞ; ð3Þ

which denotes the expected length of time until the next decision epoch
given that action a is taken in state i at the current decision epoch.

In general, there are some parameters in the above expected
rewards, expected sojourn times and transition probabilities. These
parameters may come from a policy. For example, we consider a
class of stationary Markov policies Pm parameterized by h, where
h is a tuning parameter vector. If l(h) 2Pm, then it chooses an ac-
tion a from A(i) with probability l(aji,h) when state is in i 2 S at
any decision epoch. Thus,

P
a2AðiÞlðaji; hÞ ¼ 1. We assume that

lðaji; hÞ; i 2 S; a 2 AðiÞ are differentiable with respect to h. Natu-
rally, for a given h, the SMDP evolves according to semi-Markov
kernel pðj; tji; hÞ ¼

P
a2AðiÞlðaji; hÞpðj; tji; aÞ; i; j 2 S, and the embed-

ded Markov chain evolves according to the transition probabilities

pðjji; hÞ ¼
X

a2AðiÞ
lðaji; hÞpðjji; aÞ; i; j 2 S: ð4Þ

Denote as P(h) the transition probability matrix of embedded
Markov chain, whose (i, j)th component is pðjji; hÞ; i; j 2 S. Moreover,
the expected total reward and the expected length of time between
two decision epochs under policy l(h) 2Pm are

rði; hÞ ¼
X

a2AðiÞ
lðaji; hÞrði; aÞ; ð5Þ

and sði; hÞ ¼
X

a2AðiÞ
lðaji; hÞsði; aÞ; ð6Þ

respectively, given that the system occupies state i at the current
decision epoch. Let r(h) and s(h) denote their corresponding column
vectors, respectively.

We assume that the embedded Markov chain is ergodic under
any h. Let p(h) = (p(s1,h), p(s2,h), . . . , p(sK,h)) denote the (row) vec-
tor representing the steady-state probability of embedded Markov
chain, then we have p(h)P(h) = p(h) and p(h)e = 1, where e denotes
a column vector whose all components are 1. Let rs denote the

number of decision epochs up to time s. The infinite-horizon aver-
age-reward is defined as

gði; hÞ ¼ lim
t!1

1
t

E
Z t

0
cðWs;Xrs ;Ars Þdsþ

Xrt�1

n¼0

f ðXn;AnÞjX0 ¼ i

( )
; 8i 2 S: ð7Þ

It has been shown (Puterman, 1994) that the average reward (7) is
independent of initial state i under the ergodic assumption and
equals

gði; hÞ ¼ gðhÞ :¼ pðhÞrðhÞ
pðhÞsðhÞ ; 8i 2 S: ð8Þ

Our goal is to estimate the gradient of average reward (8) with
respect to parameter vector h based on a single sample path of SMDP.

3. Performance gradient formula

In this section, on the basis of reviewing the results about per-
formance sensitivity of SMDPs (Cao, 2003, 2007), we present a per-
formance gradient formula for SMDPs under average-reward
performance.

For the SMDP in the above section, an infinitesimal generator
B(h) was defined in Cao (2003, 2007). Its (i, j)th component is
bðjji; hÞ ¼ 1

sði;hÞ ½pðjji; hÞ � dij�, where dij is a function with dij = 1 when
i = j, otherwise 0. Thus, the infinitesimal generator can be described
in vector form as follows:
BðhÞ ¼ CðhÞ½PðhÞ � I�; ð9Þ

where C(h) is a diagonal matrix with diagonal components
1

sðs1 ;hÞ
; . . . ; 1

sðsK ;hÞ
and I is an identity matrix. Assume the parameter

vector h is perturbed to h0, which corresponds to another policy
l(h0) and thus corresponds to another semi-Markov process. Based
on the infinitesimal generator in (9), the average-reward perfor-
mance difference under two different policies l(h) 2Pm and
l(h0) 2Pm can be given by the following formula (Cao, 2003),

gðh0Þ � gðhÞ ¼ pðh0Þ½Cðh0Þrðh0Þ � CðhÞrðhÞ þ ðBðh0Þ � BðhÞÞgðhÞ�; ð10Þ

where p(h0) = (p(1,h0), . . . , p(sK,h0)) is the steady-state distribution of
B(h0), i.e., p(h0)B(h0) = 0, p(h0)e = 1, and g(h) = (g(1,h), . . . , g(sK,h))T is
the performance potential satisfying the Poisson equation

BðhÞgðhÞ ¼ �CðhÞrðhÞ þ gðhÞe; ð11Þ

where T denotes the transpose. Since the steady state distribution
p(h0) of infinitesimal generator can be described by the steady state
distribution of embedded Markov chain as follows (Ross, 1996):

pði; h0Þ ¼ pði; h0Þsði; h0Þ
pðh0Þsðh0Þ ;

then from (10), we have

gðh0Þ�gðhÞ

¼
X
i2S

pði;h0Þsði;h0Þ
pðh0Þsðh0Þ

rði;h0Þ
sði;h0Þ�

rði;hÞ
sði;hÞþ

X
j2S

bðjji;h0Þ�bðjji;hÞ½ �gðj;hÞ
( )

¼
X
i2S

pði;h0Þ
pðh0Þsðh0Þ rði;h0Þþ

X
j2S

pðjji;h0Þgðj;hÞ�gði;hÞ
(

� rði;hÞþ
X
j2S

pðjji;hÞgðj;hÞ�gði;hÞ
" #

sði;h0Þ
sði;hÞ

)

¼
X
i2S

pði;h0Þ
pðh0Þsðh0Þ rði;h0Þ�rði;hÞþ

X
j2S

½pðjji;h0Þ�pðjji;hÞ�gðj;hÞ
(

� rði;hÞþ
X
j2S

pðjji;hÞgðj;hÞ�gði;hÞ
" #

sði;h0Þ�sði;hÞ
sði;hÞ

)

¼
X
i2S

pði;h0Þ
pðh0Þsðh0Þ rði;h0Þ�rði;hÞþ

X
j2S

½pðjji;h0Þ�pðjji;hÞ�gðj;hÞ
(

�gðhÞ½sði;h0Þ�sði;hÞ�
)
:
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