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a b s t r a c t

Large amplitude free vibration analysis is carried out on axially functionally graded (AFG) tapered slender
beams under different boundary conditions. The problem is addressed in two parts. First the static
problem corresponding to a uniform transverse loading is solved through an iterative scheme using a
relaxation parameter and later on the subsequent dynamic problem is solved as a standard eigenvalue
problem on the basis of known static displacement field. The mathematical formulation of the static
problem is based on the principle of minimum total potential energy, whereas Hamilton's principle has
been applied for the dynamic analysis. To account for the geometric non-linearity arising due to large
deflection, nonlinear strain displacement relations are considered. The dynamic behaviour has been
presented in the form of backbone curves in a dimensionless frequencyeamplitude plane. The results are
successfully validated with the previously published results.
Copyright © 2015, The Authors. Production and hosting by Elsevier B.V. on behalf of Karabuk University.
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1. Introduction

Non-uniform beams with variable cross-section provide a suit-
able distribution of mass and strength for engineering structures.
These structural elements are commonly used in various engi-
neering applications, such as, gas turbines, wind turbines, heli-
copter rotor blades, ship propellers, robot arms, space and marine
structures etc. [12]. Their wide-spread usage in various advanced
branches of civil, mechanical and construction industries is due to
their ability to cater to different structural requirements. Hence,
prediction and determination of dynamic behaviour of these
components have been an area of great interest among researchers.

Functionally graded materials (FGMs) are new and advanced
class of inhomogeneous composites, which are obtained by com-
bination of two or more constituent materials, mixed continuously
and functionally according to a given volume fraction. As a result,
material properties become a function of spatial position and a
continuous variation from one surface to another can be achieved.
In this respect, FGMs are advantageous over contemporary lami-
nated composites as property variation is continuous and thus
eliminate stress concentration [30]. Whereas, laminated

composites suffer from the disadvantage of discontinuity at the
layer interface and subsequent stress concentration. In the modern
context, FGMs find extensive application in aerospace, civil and
mechanical engineering fields [43], especially, where, unevenly
distributed thermal, chemical or mechanical loads are present.

The variation of material properties in functionally graded (FG)
beams may be oriented in transverse (thickness) direction or lon-
gitudinal/axial (length) direction or both. An exhaustive literature
review of the relevant domain reveals that majority of the studies
are concentrated on free vibration analysis of FG beams with ma-
terial property variation along the depth of the beam. In case of a
free vibration study of a structure themain objective is to determine
the natural frequencies corresponding to various modes of vibration
of the system. Several different techniques and methodologies have
been adopted for this purpose by different researchers [6,44]
derived the governing equations using Hamilton's principle while
employing different higher order shear deformation theories and
obtained the solution to these equations using Navier solution
method. Analysis of free vibration of FG beams was also carried out
by [23,41,42]; who used different techniques to solve the governing
equations obtained from application of Hamilton's principle.
Nguyen et al. [30] introduced a method involving first-order shear
deformation beam theory where the improved shear stiffness ma-
trix was derived from the in-plane stress and equilibrium equation.
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It is found that finite element techniques are quite popular in
analyzing the dynamics of FG beams. Chakraborty et al. [7] devel-
oped a new beam element also based on the first order shear
deformation theory to study the free vibration of FG beams. Hem-
matnezhad et al. [15] investigated the nonlinear behavior of FG
beams using finite element formulation. Von Karman type nonlinear
equations along with Timoshenko beam theory were used for the
analysis. Piovan and Sampaio [32] studied the free vibration of
axially moving thin-walled beam with annular cross-section using
finite element method. Ke et al. [21] studied the nonlinear free vi-
bration of FG beams using Galerkin's method. The nonlinear equa-
tions were based on Von Karman geometric nonlinearity and the
governing equations were solved using direct numerical integration
method and Runge-Kutta method.

The Ritz method along with an improved third order shear
deformation theory was used by Ref. [45]. Li [24] adopted a new
unified approach where a single fourth-order governing partial
differential equation was derived. The analysis by [33] was based
on classical and first order shear deformation theories where the
governing equations were obtained using Rayliegh-Ritz method.
Simsek [38] dealt with the classical, first and higher shear defor-
mation theories and derived the equations of motion employing
Lagrange's equations. Giunta et al. [11] worked with several
axiomatic refined theories and derived the governing differential
equations by variationally imposing the equilibrium through the
principle of virtual displacements. Murin et al. [29] derived fourth-
order differential equation for the FG beam and used linear beam
theory to establish equilibrium and kinetic beam equations. Sim-
sek and Kocaturk [39] used Lagrange's equations along with
EulereBernoulli beam theory to study the free vibration behavior
of FG beams under the action of concentrated moving loads. A
total Lagrangian formulation was used by [1] to investigate the
effects of geometric nonlinearity on the static and dynamic
response of FG beams. Lu and Chen [26] obtained semi-analytical
solutions for the free vibration of orthotropic FG beams using a
hybrid state-space differential quadrature method along with an
approximate laminate model. Kapuria et al. [20] presented a
theoretical model and its experimental validation for the free vi-
bration of a layered FG beam. Some research works are also
available on the effect of nonlinear elastic foundations on free
vibration behavior of FG beams [10,19,31,47]. The governing
equations were based on Euler-Bernoulli beam theory and solved
using Galerkin's method and He's variational iteration method.

A few researchers have concentrated on the free vibration of FG
beams where the material property variation is along the length of
the beam. Simsek et al. [40] derived the equation of motion by
using Lagrange's equations and Newmarkmethodwas employed to
find the dynamic responses of AFG beam. Shahba et al. [35e37] and
Shahba and Rajasekaran [34] studied the free vibration and stability
analysis of Euler-Bernoulli and Timoshenko beams through finite
element approach and various numerical analysis methods.
Alshorbagy et al. [4] employed numerical FEM and Euler-Bernoulli
beam theory to investigate the dynamic characteristics of FG
beams. Huang et al. [18] presented a newapproach for investigating
the vibration behaviors of non-uniform AFG Timoshenko beams by
changing the coupled governing equations to a single governing
equation by introducing an auxiliary function. Huang and Li [16,17]
studied the dynamic and buckling behavior of AFG tapered beams
by reducing the corresponding governing differential equation to
Fredholm integral equations. Aydogdu [5], Elishakoff et al. [9] and
Wu et al. [46] investigated the free vibrations of AFG tapered beams
using the semi inverse method. Mazzei and Scott [27] studied
stability and vibration of AFG tapered shafts loaded by axial
compressive forces. Li et al. [25] derived the characteristic equa-
tions in closed form for exponentially graded beams with various
boundary conditions. Kein [22] investigated the large displacement
response of tapered AFG cantilever beams by finite element
method. Hein and Feklistova [14] studied the vibrations of non-
uniform FG beams with various boundary conditions using the
EulereBernoulli theory and Haar wavelets. Akgoz and Civalek [3]
performed vibration response analysis of AFG tapered micro
beams with Euler-Bernoulli beam theory and modified couple
stress theory, by utilizing RayleigheRitz solution method. The au-
thors [2] also investigated buckling problem of linearly tapered
cantilever micro-columns of rectangular and circular cross-section
on the basis of modified strain gradient elasticity theory.

Literature review reveals that a substantial amount of research
work is focused on the field of free vibration study of depth-wise
functionally graded beams, while relatively fewer research
studies are available for AFG beams. Works on large amplitude free
vibration, specifically variation of loaded natural frequencies with
external transverse loading of AFG taper beams is limited. It should
be pointed out that a vast majority of research papers deal with a
particular type (Linear) of taper profile, while the emphasis re-
mains on developing new methods to determine the natural fre-
quencies of the system. Hence, the present study is taken up with

Nomenclature

A0 cross-sectional area of the beam at the root
b width of the beam
ci unknown coefficients for static analysis
di unknown coefficients for dynamic analysis
E0 elastic modulus of the beam material at the root
{f} load vector
I0 moment of inertia of the beam at the root
[K] stiffness matrix
[Ks] static stiffness matrix
L length of the beam
[M] mass matrix
nw, nu number of constituent functions for w and u

respectively
ng number of Gauss points
p magnitude of uniformly distributed load
t0 thickness of the beam at the root

T kinetic energy of the system
u displacement field in x-axis
U strain energy stored in the system
V potential energy of the external forces
w displacement field in z-axis
wmax maximum deflection of the beam
a taper parameter
d variational operator
ε
b
x , ε

s
x axial strains due to bending and stretching respectively

r0 density of the beam material at the root
t time coordinate
u1 first natural frequency
unl nonlinear frequency parameters
x normalized axial coordinate
p total potential energy of the system
ji set of orthogonal functions for u
fi set of orthogonal functions for w
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