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a b s t r a c t

Based on theoretical arguments and empirical evidence we advocate the use of the lognormal distribu-
tion as a model for activity times. However, raw data on activity times are often subject to rounding
and to the Parkinson effect. We address those factors in our statistical tests by using a generalized version
of the Parkinson distribution with random censoring of earliness, ultimately validating our model with
field data from several sources. We also confirm that project activities exhibit stochastic dependence that
can be modeled by linear association.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Most published work on stochastic scheduling falls into one of
two broad categories: (1) machine scheduling models and (2) pro-
ject scheduling models. A key component of such models is a prob-
ability distribution for processing times or activity durations.
Machine scheduling models tend to rely on the exponential distri-
bution or the normal distribution. The exponential distribution of-
ten yields elegant results in problems that cannot be solved
analytically for generic distributions (e.g., Bruno et al., 1981; Ku
and Niu, 1986). The normal distribution is consistent with assum-
ing that processing times are sums of numerous independent com-
ponents of uncertainty so that the central limit theorem applies
(e.g., Soroush and Fredendall, 1994). Project scheduling models,
since the seminal work of Malcolm et al. (1959), have mostly relied
on the beta distribution because of its flexibility and a claim that it
is easy to estimate (Clark, 1962).

In this paper, we advocate the use of the lognormal distribution
as a model for processing times and activity durations. We enu-
merate the various theoretical properties that support the use of
the lognormal for both machine scheduling and project scheduling
models, although our primary concern lies with the latter.

For the most part, the choice of a probability distribution for
machine scheduling or project scheduling seems to be driven by
convenience rather than empirical evidence. Efforts to validate

assumptions about processing time distributions are scarce. For
example, we have found no evidence in the literature that the beta
distribution has ever been validated. Some progress has been made
with data on surgery times (May et al., 2000; Strum et al., 2000),
showing that the lognormal distribution provides the best fit by
far. However, machine scheduling models have rarely considered
the lognormal distribution (an exception being Robb and Silver,
1993). In this paper, we validate the use of the lognormal distribu-
tion as a model for activity times in several independent datasets
obtained from project scheduling applications. By contrast, the
beta distribution and the exponential distribution would fail in
most of these cases.

Two practical issues arise in attempts to validate a particular
probability distribution. One factor is the ‘‘Parkinson effect,’’ which
is especially relevant in project scheduling: reported activity times
may violate lognormality because earliness is hidden, not because
the lognormal is a poor model. In other words, activities may finish
earlier than estimated, or earlier than a given deadline, but there
may be no incentive to report any outcome other than finishing
on time. In such cases, the reported data contain a bias that ob-
scures the underlying distribution. A second factor is that empirical
data may be collected on a coarse time scale, leading to rounding of
the actual times. However, rounding may cause false rejection of
lognormality in standard tests, such as Shapiro–Wilk (Royston,
1993). These problems may explain why the lognormal has not
been widely adopted for machine scheduling applications as well
as project applications. In our validations, we recognize the
Parkinson effect and the consequences of rounding. We introduce
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a new version of the Parkinson distribution that helps diagnose
whether the effect is present and makes possible accounting for
it in simulation. In addition, we use statistical tests that account
for the presence of ties occurring on a coarse time scale.

The vast majority of papers in both machine scheduling and
project scheduling also rely on the assumption of statistical inde-
pendence, but that is a very strong assumption. One serendipitous
feature of the lognormal distribution is that it lends itself to use
when statistical dependence is modeled by linear association (Ba-
ker and Trietsch, 2009a). In this paper, we also validate the linear
association model for representing dependencies in empirical data,
ultimately justifying linearly-associated lognormal processing
times with different means but the same coefficient of variation.

Our results are relevant to both practitioners and theoreticians.
The relevance to practitioners is direct: they can implement easier,
more reliable stochastic estimates by our approach. The relevance
to theoreticians is by informing stochastic scheduling models, such
as the stochastic resource constrained project scheduling (SRCPS),
which has attracted increasing attention over the last decade. His-
torically, SRCPS focused on minimizing the expected makespan un-
der the earliest start policy, but that is not considered sufficient
today (Demeulemeester and Herroelen, 2002). Most contemporary
SRCPS models start with deterministic sequencing and include
timing decisions that account for stochastic variation. The purpose
is to obtain proactive schedules that hedge for variation (Herroelen
and Leus, 2005). Hedging requires specifying safety time buffers.
Models that study the tradeoff between minimizing the makespan
(by reducing hedging) and achieving a stable or predictable sche-
dule (by increasing hedging) are also known as robust. In both pro-
ject and machine shop environments, however, we may expect
deviations from plan during execution. Reactive scheduling models
address the correct response (Aytug et al., 2005). The purpose of
hedging is to reduce the expected cost during the reactive stage.

Some proactive models do not require explicit distributional
information, opting instead to allocate some arbitrary amount of
safety time to the schedule in some predefined configuration. A
practical heuristic for the allocation of safety time in projects is
proposed by Pittman (1994). Goldratt (1997) promotes Pittman’s
heuristic (and other ingredients developed by Pittman) as the basis
of Critical Chain scheduling. This heuristic is perhaps the best
known approach to setting safety time buffers that does not re-
quire distributions. However, there is no field evidence that Critical
Chain provides sufficient protection—our own data suggests it does
not, because it lacks calibration. Emphatically, it is impossible to
test such models without distributions. One of our empirical re-
sults that is important for theoreticians is that such testing must
allow for a much higher coefficient of variation [cv] than is usually
the case in the literature. Trietsch (2005) argues against addressing
stochastic variation without stochastic analysis. In response, Ash
and Pittman (2008) combine Pittman’s heuristic with standard
PERT distributions. Trietsch (2006) proposes a proactive timing ap-
proach to minimize total weighted flowtime costs, which also re-
lies on explicit distributions (and allows stochastic dependence).
Since the makespan is a flowtime, the model is more general than
minimizing makespan, and it can also include a tardiness penalty.
The model addresses the reactive stage cost indirectly, through the
flowtime earliness and tardiness cost parameters. In contrast to
earlier timing models, this approach makes no attempt to set expli-
cit safety time buffers but instead sets planned release dates for
each activity. Those release dates must satisfy a generalized news-
vendor model. Bendavid and Golany (2009) solve that model by
cross entropy. Baker and Trietsch (2009a) demonstrate that it is
possible to find optimal release dates for any given sequence and
any simulated sample in polynomial time. Dablaere et al. (2011)
propose a very similar model for setting release dates and also
use the newsvendor model and simulated samples. A related mod-

el maximizes net present value instead of minimizing weighted
flowtime, and may also be addressed by setting release dates and
optimizing them for a simulated sample (Wiesemann et al.,
2010). Conceptually similar stochastic models involve setting due
dates instead of release dates (e.g., Baker and Trietsch, 2009b).

In summary, the models we cite either rely on distributions or
use them for testing, so identifying correct distributions and show-
ing how to estimate their parameters is crucial. The fact that we
validated the prevalence of stochastic dependence and the ability
to model it by linear association is also important for future theo-
retical research on proactive models even if we ignore the Parkin-
son effect. If we do not ignore it, the introduction of the Parkinson
distribution is a theoretical contribution of this paper. Another the-
oretical contribution is the introduction of a bootstrap simulation
approach that facilitates scheduling new projects based on histor-
ical data. We also prove that the lognormal distribution can be
used to represent ratios of actual time to estimated time even
though they are not independent random variables.

Section 2 provides background information from the project
scheduling literature and discusses published activity distribution
models for PERT. Section 3 presents theoretical arguments for
selecting the lognormal distribution as a model for activity time.
Section 4 presents empirical support for that choice, based on data
from several sources, including Trietsch et al. (2010)—which is an
unpublished earlier version of this paper that we now use mainly
for this purpose. In Section 5 we show how to account for the Par-
kinson effect and for ties in the data. Section 6 demonstrates that
the stochastic dependence we encounter in our datasets can be
modeled effectively by linear association. Section 7 contains our
conclusion.

2. Activity time distributions

The basic tools used in project scheduling are two overlapping
approaches introduced in the late 1950s: Critical Path Method
(CPM) in Kelley (1961) and Program Evaluation and Review Tech-
nique (PERT) in Malcolm et al. (1959) and Clark (1962). Of the two,
only PERT recognizes the probabilistic nature of activity times
within a project. The deterministic assumption of CPM facilitated
the developments of time/cost models (crashing) and of sequenc-
ing models that become necessary when resources are constrained
(Demeulemeester and Herroelen, 2002). At the heart of the PERT
method is a set of assumptions that facilitates a systematic and
intuitively-appealing method for modeling stochastic behavior in
projects. In this paper we address the most basic element of PERT:
fitting a distribution to each individual activity time. According to
Clark (1962), the beta distribution has the necessary flexibility, and
a good way to estimate its parameters is by eliciting three values,
an approach we call the triplet method. In particular, estimates are
elicited for the minimal possible value (denoted min), the mode
(mode), and the maximal possible value (max). These estimates
are then used to define the mean l, and the standard deviation,
r, using the formulas

l ¼ ðminþ 4modeþmaxÞ=6; ð1Þ
r ¼ ðmax�minÞ=6: ð2Þ

Eq. (2) was selected arbitrarily, to resemble a truncated normal be-
tween ±2.96r. Eq. (1) was then derived as an approximation for a
beta distribution that matches Eq. (2) and the estimated min, mode,
and max values. Clark (1962) states, ‘‘The author has no information
concerning distributions of activity times, in particular, it is not sug-
gested that the beta or any other distribution is appropriate.’’ Fur-
thermore, theoretically, with three exceptions—noted by Grubbs
(1962) as part of a scathing critique of PERT—no beta distribution
fits both estimators. Nonetheless, Eqs. (1) and (2) provide good
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