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a b s t r a c t

A system is subject to shocks that arrive according to a non-homogeneous pure birth process. As shocks
occur, the system has two types of failures. Type-I failure (minor failure) is removed by a general repair,
whereas type-II failure (catastrophic failure) is removed by an unplanned replacement. The occurrence of
the failure type is based on some random mechanism which depends on the number of shocks occurred
since the last replacement. Under an age replacement policy, a planned (or scheduled) replacement hap-
pens whenever an operating system reaches age T. The aim of this note is to derive the expected cost
functions and characterize the structure of the optimal replacement policy for such a general setting.
We show that many previous models are special cases of our general model. A numerical example is pre-
sented to show the application of the algorithm and several useful insights.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many systems deteriorate with age and random repairable fail-
ures during operations. In reliability theory, it is worth studying
the optimal maintenance or replacement policies to minimize the
operating costs and catastrophic breakdown risks. Most of the previ-
ous studies focused on the systems subject to shocks according to a
non-homogeneous Poisson process (NHPP). The NHPP shock process
only depending on system’s age is, however, only applicable to
systems that are not affected by the number of failures. In this paper,
we focus on shocks occurring according to a non-homogeneous pure
birth process (NHPBP). In fact, the NHPBP is more appropriate to
model the system’s deterioration process which not only depends
on the system’s age, but also the number of shocks. Under the NHPBP
shock process, we investigate the maintenance or replacement pol-
icies. This general model can be applied in production, insurance,
epidemiology and load-sharing systems.

Age replacement policy (ARP) is quite common and easy-to-
implement in practice. Under a classical ARP, an operating system

is replaced at age T or at failure, whichever occurs first (Barlow and
Hunter, 1960). Furthermore, maintenance policies including both
replacements and minimal repairs have been studied in the litera-
ture. Nakagawa (1981) considered a system with two types of fail-
ures: type-I failure occurs with probability q and is removed by
minimal repair, whereas type-II failure occurs with probability
p(= 1 � q) and is removed by replacement. Sheu et al. (1995) pro-
posed an extended replacement policy with general random repair
cost and age-dependent minimal repair.

The key issue for the most replacement policies is to develop the
expected cost function from which an optimization policy can be
determined. There are extensive studies in this line of research. Chen
and Savits (1988, 1992) established the expected total a-discounted
cost for a system under the ARP. Aven and Berman (1986) and Puri
and Singh (1986) also considered the ARP optimization problem
by the non-monotone marginal cost functions into account. Many
works focused on the system subject to shocks which cause system
failures. Esary et al. (1973) assumed that shocks occur according to a
homogeneous Poisson process. A-Hameed and Proschan (1973)
treated the case with shocks following a NHPP. Boland and Proschan
(1983) investigated the optimal periodic replacement policy for a
system subject to non-homogeneous Poisson shocks and time-
independent cost structure. Block et al. (1988) obtained the similar
results for the case with time-dependent cost structure. Sheu (1998)
considered a more generalized age and block replacement problem
under a non-homogeneous Poisson shock process and obtained
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optimal policy existence conditions. A-Hameed and Proschan (1975)
presented a pure birth shock model with a nonstationary Markov
process: that is given k shocks have occurred in [0, t], the probability
of a shock occurring in (t, t + D) is kkk(t)D + o(D).

In this note, we treat a more general case in which shocks occur
according to a non-homogeneous or nonstationary pure birth pro-
cess. Specifically, we consider a maintenance policy which includes
both replacements and repairs (to be described explicitly later). The
decision to repair or replace the system at failure depends on the
number of shocks suffered since the last replacement. The aim of
our study is to examine the structure of the optimal maintenance
policy which also generalizes the previous models in the literature.
It is worth noting that there were some recent studies using the
Markov arrival process (MAP) to model failure process for the case
where the major failure occurrence (requiring the replacement)
depends on the number of minor repairs (requiring minimal
repairs). Montoro-Cazorla et al. (2009) considered systems under
shocks whose interarrival times are not independent and modeled
the failure process as an MAP. Although there are some advantages
in using the MAP process, estimating the transition matrices of the
MAP is a quite challenging task in practice and requires extensive
data collection. In addition, the analysis based on MAP model is
mainly computational approach and it is very hard, if not impossible,
to characterize the structure of the optimal policy analytically. Thus
we are motivated to use the NHPBP to model the system failure
process depending on both age and number of failures.

The rest of this note is organized as follows. Section 2 presents
the model formulation and develops the expected cost functions.
Section 3 focuses on the optimization of the maintenance policy.
Some special cases are discussed in Section 4. Section 5 develops
an algorithm for determining to optimal replacement schedule,
and a computational example is given to illustrate the application
of the algorithm. Finally, Section 6 concludes.

2. Model formulation and cost functions

2.1. The shock model

Consider a system subject to shocks which occur according to a
non-homogeneous or nonstationary pure birth process defined
below.

Definition 1. If a counting process {N(t): t P 0} is a non-
homogeneous continuous time Markov process with following
conditions:

(i) N(0) = 0,
(ii) P{N(t + h) � N(t) = 1jN(t) = k} = kk(t) + o(h),

(iii) P{N(t + h) � N(t) P 2jN(t) = k} = o(h),
(iv) the process has independent increments,

then the process is called a non-homogeneous or nonstationary
pure birth process (denoted by NHPBP or NSPBP) with the intensity
function {kk(t), k = 0,1,2, . . .}.

Remark 1. If kk(t) = k(t) for k = 0,1,2, . . . , then the NHPBP is reduced
to a non-homogeneous Poisson process (NHPP). If kk (t) = kkk(t), it
becomes the case considered by A-Hameed and Proschan (1975).
If kk(t) = kk(t), it can be considered as a generalized Yule birth
process.

Remark 2. There are many studies on the effectiveness of
preventive maintenance (PM) for a maintainable system. Most of
them model the hazard rates of maintained systems after PM
interventions. Nguyen and Murthy (1981) propose that kk(t) is the
hazard rate of the system after the kth PM intervention (the initial

hazard function isk (t) = k0(t)). According to a taxonomy by Nakag-
awa (1988) and Lin et al. (2000), existing PM models are categorized
into three groups: (i) Hazard rate model if kkðtÞ ¼ ak�1kk�1ðtÞ ¼Qk�1

j¼0 aj

� �
kðtÞ, (ii) Age reduction model if kk(t) = k(bk�1yk�1 + t), and

(iii) Hybrid model if kkðtÞ ¼
Qk�1

j¼0 aj

� �
kðbk�1yk�1 þ tÞ, where ak, bk are

non-negative adjustment factors, and yk is the effective age of the
system just prior to the kth PM for k = 1,2, . . . Wu and Zuo (2010)
extend the existing PM models to three new ones: (i) Linear model if
kk(t) = ak�1kk�1(t) + bk�1, (ii) Nonlinear model if kk(t) = kk�1

(ak�1t + bk�1), and (iii) Hybrid model if kk(t) = ak�1kk�1

(ak�1t + bk�1) + bk�1, where ak, bk, ak, and bk are non-negative
parameters for k = 1,2, . . . In this paper, the NHPBP is utilized to
derive the stochastic behavior of maintenance or replacement
policies through considering the shock-number based aging inten-
sity kk(t).

Now, we assume a generalized age replacement policy is
implemented as follows:

(1) As a NHPBP shock occurs, the system enters one of two types
of failure states: type-I failure (minor failure), which is
removed by a repair, and type-II failure (catastrophic fail-
ure), which is removed by an unplanned (or unscheduled)
replacement. A planned (or scheduled) replacement is
carried out whenever the system reaches age T. Thus, the
system is replaced at age T or at any type-II failure, which-
ever occurs first. A replacement cycle is defined as the time
interval between two consecutive replacements.

(2) The probability of a type-II failure depends on the number of
shocks suffered since the last replacement. Let M be the num-
ber of shocks until the first type-II failure since the last
replacement, and �Pk

� �
be a sequence with the kth term

Pk ¼ PðM > kÞ as the survival function of M (i.e., Pk is the prob-
ability that the first k shocks are type-I failures). To model the
system deterioration with the number of shocks, we assume
that 1 ¼ P0 P P1 P P2 P � � �. Let pk ¼ PðM ¼ kÞ ¼ Pk�1 � Pk

¼ Pk�1ð1� Pk=Pk�1Þ. When the kth shock occurs, the system
is either repaired (type-I failure) with probability
qk ¼ Pk=Pk�1 or replaced (type-II failure) with probability
hk ¼ 1� qk ¼ 1� Pk=Pk�1.

The following cost structure is imposed on the system:

(1) The costs of unplanned (due to type-II failure) and planned
(due to age) replacements are R1 and R2, respectively. We
assume that R1 P R2 > 0, which signifies that the unplanned
replacement cost is no less than planned replacement cost.

(2) A very general random repair cost is considered. The cost of
the kth general repair at age t is denoted by g(C(t),ck(t)),
where C(t) is the age-dependent random part, ck(t) is the
deterministic part which depends on the age and the num-
ber of the general repairs, and g is a positive non-decreasing
continuous function. The expected repair cost is denoted by
nk(t) = EC(t)[g(C(t),ck(t))]. Assume that the random part C(t)
has cumulative distribution function (CDF) Kt(x), probability
density function (PDF) kt(x) and finite first moment E[C(t)].
An example of nk(t) is given in Section 5. Let mk(t) be the cost
per unit time of maintenance of the system at time
t 2 [Sk,Sk+1), where Sk is the occurrence time of the kth shock
for k = 0,1,2, . . . with S0 = 0.

Moreover, we also make the following assumptions:

(1) The system is monitored continuously and failures are
detected immediately.
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