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a b s t r a c t

We investigate the stochastic flow shop problem with m machines and general distributions for process-
ing times. No analytic method exists for solving this problem, so we looked instead at heuristic methods.
We devised three constructive procedures with modest computational requirements, each based on
approaches that have been successful at solving the deterministic counterpart. We compared the perfor-
mance of these procedures experimentally on a set of test problems and found that all of them achieve
near-optimal performance.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The flow shop problem plays an important role in the theory of
scheduling. The deterministic version was introduced to the litera-
ture by Johnson (1954), in what is often identified as the first for-
mal study of a problem in scheduling theory. That article has led to
a large number of papers studying variations of the basic model
and various algorithmic approaches for finding solutions. For
example, Reisman et al. (1997) claimed to have located 170 articles
containing contributions to the ‘‘subdiscipline’’ of flow shop sched-
uling. More recently, Ruiz and Maroto (2005) cited 53 articles in
their review paper on heuristic procedures for the permutation
flow shop problem with makespan objective. Framinan et al.
(2004) cited 76 articles in a review paper on the same topic. Reza
Hejazi and Saghafian (2005) cited 176 articles in a review paper on
exact and heuristic approaches to the same problem. Clearly, the
flow shop scheduling problem has attracted a lot of attention.

On the other hand, progress with the stochastic version of the
flow shop problem has been very limited. Few general results have
been obtained, and the optimization of basic cases remains a chal-
lenge. In this paper, we present a comparative study of heuristic
methods for solving the m-machine stochastic flow shop problem
with the objective of minimizing the expected makespan. We focus
on a few relatively simple heuristic approaches that are motivated
by the existing literature, and we compare their performance on a
set of test problems. Finally, we summarize our results and suggest
what questions might guide future research on this subject.

2. Background on the deterministic model

The classical flow shop problem contains n jobs and m ma-
chines, as well as a set of standard assumptions (see, for example
Baker and Trietsch, 2009a). The objective is to minimize the length
of the schedule or makespan. In the case of two machines, we can
construct an optimal job sequence by employing Johnson’s Rule
(Johnson, 1954), which leads to an efficient algorithm. In the case
of three or more machines, the flow shop problem is NP-hard. Sev-
eral effective heuristic procedures have been invented for solving
problems with three or more machines. Relatively recent reviews
of that literature have been compiled by Framinan et al. (2004)
and Ruiz and Maroto (2005). We mention two heuristics in partic-
ular, as they are adapted to the stochastic model in our work. The
first is due to Campbell et al. (1970), known as the CDS heuristic.
The second is due to Nawaz et al. (1983), known as the NEH heu-
ristic. Both are constructive heuristics. This term means that the
algorithms perform a predictable amount of computation and ulti-
mately construct a complete schedule. In contrast, an improvement
heuristic starts with a given sequence and searches for improve-
ment, but the computational effort is unpredictable. Improvement
heuristics are usually based on generic methods such as neighbor-
hood search. Sophisticated forms of improvement heuristics in-
clude tabu search, simulated annealing and genetic algorithms.

The CDS algorithm uses Johnson’s Rule in a heuristic fashion
and creates several schedules from which a ‘‘best’’ schedule is cho-
sen. The algorithm corresponds to a multistage use of Johnson’s
Rule applied to a two-machine pseudo-problem derived from the
original. The NEH algorithm constructs a single sequence, starting
with a list of the jobs. The first two jobs on the list are removed, the
two possible permutation sequences of those jobs are constructed,
and the better of the two is retained (with ties broken arbitrarily).
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The relative sequence position of the first two jobs is then fixed. At
each succeeding step, a job is removed from the list and placed
optimally into the partial sequence retained from the previous
step. When the last job is removed from the list, a full sequence
is chosen from among the possible insertions at the final step.

The CDS algorithm and the NEH algorithm are computationally
efficient. The computational complexity is O(mnlogn) for the CDS
algorithm and O(mn2) for the NEH algorithm. Comparative studies
by Park et al. (1984), Widmer and Hertz (1989), Taillard (1990), Ho
and Chang (1991), Ponnambalam et al. (2001) and Ruiz and Maroto
(2005) have tended to reinforce the proposition that these are the
two best and most robust constructive procedures available.

3. The stochastic model

The most common stochastic version of the flow shop problem
assumes that the processing times are allowed to be random vari-
ables. In particular, we assume that the processing time of job j on
machine k follows a probability distribution with mean lkj and stan-
dard deviation rkj (denoted r when it applies across all jobs and
machines). For convenience, we also assume that the processing
times are drawn independently from distributions of a given family,
such as the normal or the uniform. As a result, the makespan will
also be random, and the objective is to minimize its expected value.
This single change from the deterministic version of the problem is
sufficient to make the problem quite difficult to solve. In fact, no
analytic solution procedure exists for the stochastic version. Little
attention has even been paid to finding heuristic procedures for
the stochastic flow shop problem, although Portougal and Trietsch
(2006) have shown that Johnson’s Rule applied to mean values will
produce asymptotically optimal expected makespan values in the
stochastic case. Our paper essentially presents the first study com-
paring heuristic procedures for the m-machine stochastic flow shop
problem with expected makespan criterion.

If we restrict attention to the two-machine stochastic flow shop
problem, it is still the case that no general results are known, but if
we restrict ourselves further to the case of exponential distribu-
tions, then we have one result, which states: the expected make-
span is minimized by sequencing the jobs in nonincreasing order
of (1/li1 � 1/li2). This ordering is known as Talwar’s Rule. It was
conjectured to be optimal by Talwar (1967) and later proven opti-
mal by Cunningham and Dutta (1973). Thus, sequencing jobs based
on the differences in their mean processing rates provides the opti-
mal two-machine solution for one special case.

With the solution to the two-machine case established, we
might look next to the m-machine case with exponential distribu-
tions, but generalizations of Talwar’s Rule have not been developed
for three or more machines. One advantage of the exponential
assumption is the possibility of analytic calculation of the expected
makespan. (Lacking an optimal sequencing rule, we must have
such a capability merely to compare one sequence with another.)
However, a disadvantage of the exponential distribution is the fact
that it has only one parameter: its mean cannot be different from
its standard deviation. Pinedo (1982) suggests the following rule
of thumb: ‘‘Schedule jobs with smaller expected processing times
and larger variances in the processing times toward the beginning
and the end of the sequence.’’ But for this rule to have meaning, we
must deal with distributions that have distinct mean and variance
parameters, unlike the exponential. Kalczynski and Kamburowski
(2006) heuristically adapted Talwar’s result for Weibull distribu-
tions, but did not attempt to generalize beyond two machines.

Baker and Trietsch (2010) tested three simple heuristic proce-
dures for the two-machine stochastic model with general probabil-
ity distributions. They compared Johnson’s Heuristic (Johnson’s
Rule applied to the mean processing times), Talwar’s Heuristic

(Talwar’s Rule applied to the mean processing times), and an Adja-
cent Pairwise Interchange Heuristic (which swapped adjacent jobs
if their sequence, when considered separately, could be improved).
Although none of the heuristic procedures dominated the others,
Baker and Trietsch found that they all achieved very good perfor-
mance, providing expected makespan values that, on average, were
within 1% of the best value found. In our work, we demonstrate
that this same good performance can be achieved in the m-ma-
chine case.

For the exponential case, Gourgand et al. (2003) show that the
expected makespan calculation can be carried out for m machines
analytically using a Markovian approach, but even that method
encounters limitations due to problem size. (They proceed no fur-
ther in making the calculation than medium-size problems of 20
jobs and 5 machines.) They conclude that we must ultimately rely
on simulation techniques to evaluate the expected makespan.
Thus, to make progress on the model with general probability dis-
tributions for processing times, we shall have to rely on (1) heuris-
tic procedures to find good sequences and (2) simulation
procedures to calculate expected makespan values.

4. Heuristic procedures

We describe three main heuristic procedures for sequencing
jobs in the stochastic flow shop with expected makespan objective.
Two of these procedures follow the logic of the CDS algorithm. In
other words, they create a series of two-machine pseudo-prob-
lems; then those pseudo-problems are solved by a two-machine
algorithm (either Johnson’s Rule or Talwar’s Rule). The procedures
are thus referred to as Johnson’s Heuristic and Talwar’s Heuristic.

Johnson’s Heuristic solves a two-machine stochastic flow shop
problem by replacing the processing times with their mean values.
Then, the resulting deterministic problem is solved by Johnson’s
Rule to deliver a desired sequence for the jobs. This procedure is
heuristic because it solves a deterministic counterpart of the sto-
chastic problem. Talwar’s Heuristic solves a two-machine stochas-
tic flow shop problem by applying Talwar’s Rule (sorting the jobs
by nonincreasing differences of the mean processing rates). This
procedure is heuristic because its optimality does not extend to
general distributions.

Thus, the first two heuristic procedures might be called the
CDS/Johnson Heuristic and the CDS/Talwar Heuristic. Our third
procedure is the NEH algorithm, applied to the stochastic problem
directly. That is, the procedure finds the best two-job sequence;
then, keeping the two jobs in their better order, it finds the best
insertion of the third job into the two-job sequence, then the best
insertion of the fourth job into the best three-job sequence, and so
on. The jobs are considered in the order of nonincreasing total
mean processing time.

Each heuristic procedure requires the ability to compare two
job sequences and choose the better one. In other words, we must
be able to find the expected makespan for each of two sequences in
a given stochastic flow shop problem and identify the smaller of
the two. For this purpose, we use simulation. Gourgand et al.
(2003) assessed the accuracy of simulation by making comparisons
in cases for which their Markovian analysis is practicable. They
tested different sample sizes on a standard dataset and found, for
example, that sample sizes of 200,000 produced 95% confidence
intervals on the order of 0.1% and average estimation errors on
the order of 0.05%. Those results were based on comparing simula-
tion and analytic calculations for stochastic flow shop problems
with exponential processing times. The tests used lexicographic
job sequences (i.e., the equivalent of an arbitrary sequence) and
indicated that a sample size this large is more than sufficient to
obtain useful estimates.
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