
Full length article

Adaptive workflow scheduling in grid computing based on
dynamic resource availability

Ritu Garg*, Awadhesh Kumar Singh
Computer Engineering Department, National Institute Of Technology, Kurukshetra, Haryana, India

a r t i c l e i n f o

Article history:
Received 13 October 2014
Received in revised form
19 December 2014
Accepted 5 January 2015
Available online 4 February 2015

Keywords:
Grid computing
DAG grid workflow
Adaptive workflow scheduling
Re-scheduling
Resource monitoring

a b s t r a c t

Grid computing enables large-scale resource sharing and collaboration for solving advanced science and
engineering applications. Central to the grid computing is the scheduling of application tasks to the
resources. Various strategies have been proposed, including static and dynamic strategies. The former
schedules the tasks to resources before the actual execution time and later schedules them at the time of
execution. Static scheduling performs better but it is not suitable for dynamic grid environment. The lack
of dedicated resources and variations in their availability at run time has made this scheduling a great
challenge. In this study, we proposed the adaptive approach to schedule workflow tasks (dependent
tasks) to the dynamic grid resources based on rescheduling method. It deals with the heterogeneous
dynamic grid environment, where the availability of computing nodes and links bandwidth fluctuations
are inevitable due to existence of local load or load by other users. The proposed adaptive workflow
scheduling (AWS) approach involves initial static scheduling, resource monitoring and rescheduling with
the aim to achieve the minimum execution time for workflow application. The approach differs from
other techniques in literature as it considers the changes in resources (hosts and links) availability and
considers the impact of existing load over the grid resources. The simulation results using randomly
generated task graphs and task graphs corresponding to real world problems (GE and FFT) demonstrates
that the proposed algorithm is able to deal with fluctuations of resource availability and provides overall
optimal performance.
Copyright © 2015, The Authors. Production and hosting by Elsevier B.V. on behalf of Karabuk University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

1. Introduction

Recently, the rapid development of networking technology and
web has led to the possibilities of using large number of
geographically distributed heterogeneous resources owned by
different organizations. These developments have led to the foun-
dation of new paradigm known as Grid Computing [9,15]. Grid
Computing is a type of parallel and distributed system that involves
the integrated and collaborative use of resources depending on
their availability and capability to satisfy the demands of re-
searchers requiring large amount of communication and compu-
tation power to execute advanced science and engineering
applications. Precedence constrained parallel applications

(workflows) are one of the typical application models used in sci-
entific and engineering fields requiring large amount of bandwidth
and powerful computational resources. To achieve the promising
potential of distributed resources, effective and efficient scheduling
algorithm is important. The grid scheduler acts as an interface
between user and distributed grid resources. The workflow
scheduling in grid is one of the key challenges, which deals with
assigning workflow tasks to the available grid resources while
maintaining the task precedence (dependency) constraints and to
meet the quality of service (QoS) demands of the user like mini-
mizing the overall execution time.

In general, scheduling tasks on distributed grid resources be-
longs to a class of NP-hard problems [16]. So heuristics or ap-
proximations are the preferred options to obtain near optimal
solutions. Many heuristics have been devoted to this problem as
discussed in literature [2,7,21,30] considering that accurate pre-
diction is available for computation cost and communication cost of
resources. However, in real environment, it is difficult to accurately
predict the values due to heterogeneous and dynamic

* Corresponding author.
E-mail addresses: ritu.59@gmail.com (R. Garg), aksinreck@rediffmail.com

(A.K. Singh).
Peer review under responsibility of Karabuk University.

HOSTED BY Contents lists available at ScienceDirect

Engineering Science and Technology,
an International Journal

journal homepage: http: / /www.elsevier .com/locate/ jestch

http://dx.doi.org/10.1016/j.jestch.2015.01.001
2215-0986/Copyright © 2015, The Authors. Production and hosting by Elsevier B.V. on behalf of Karabuk University. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Engineering Science and Technology, an International Journal 18 (2015) 256e269

http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:ritu.59@gmail.com
mailto:aksinreck@rediffmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2015.01.001&domain=pdf
www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch
http://dx.doi.org/10.1016/j.jestch.2015.01.001
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.jestch.2015.01.001
http://dx.doi.org/10.1016/j.jestch.2015.01.001


characteristics of the grid environment. The dynamicity of the grid
resources is due to both the network connectivity and computa-
tional nodes.

As the grid resources are not dedicated, and can be used by the
other users simultaneously, which leads to load variations on re-
sources. The local tasks have more priority and handled first in
comparison to grid tasks. The fluctuations in the resource avail-
ability (computing speed of the host and links bandwidth) due to
resource's local loads and competition from other users cause the
original schedule to become sub optimal. If for instance, load of the
processor increases, the execution time of the tasks assigned to it
will increase. Further, sudden increase in link load, increases the
data transfer time between computers where dependent tasks re-
sides. In case of grid applications especially for long running jobs
(days or weeks), the performance degradation caused by load over
resources is unacceptable. It leads to the necessity of relocating the
tasks to other resources. Hence, it is a key challenge to maintain an
application performance during its execution, if their resources
suddenly receive high workload.

In order to ensure high performance in dynamic and unreliable
grid environment, we considered the adaptive scheduling [19]
where scheduling policy change dynamically as per the previous
and current behavior of the system to cope with the variations in
the resource availability. Here, initial scheduling of all the tasks is
performed statically and then rescheduling of unexecuted tasks is
performed when required. The ability to discover and monitor the
status of resources at run time is fundamental for the adaptive
operation of the grid here.

In this paper, we proposed a novel Adaptive Workflow Sched-
uling (AWS) algorithm for grid applications consisting of workflow
tasks (dependent tasks) to meet the performance requirements
based on QoS information like availability along with the accessi-
bility of the resources as indicated by service level agreement (SLA).
It considers the processors (computing speed) and network links
(bandwidth) availability by monitoring the load over non-
dedicated grid processing nodes and network links. The proce-
dure involves static task scheduling, periodic resource monitoring
and rescheduling the remaining unexecuted tasks in order to deal
with changes/fluctuations occurring at run time and to achieve
minimum execution time (makespan) of the workflow grid appli-
cation. The procedure of proposed AWS differs from other ap-
proaches in literature by considering the dynamic availability of
resources, both computing nodes and communication links due to
existence of local load or load by other users. It considers (i)
Degradation of resource performances especially computing speed
of nodes and network links bandwidth as per SLA, as a source for
triggering rescheduling. (ii) Evaluate the benefits of rescheduling
considering cost of reevaluating the schedule and overhead due to
transfer of data. (iii) Availability of newly added resources.

The AWS algorithm is efficient one as it achieves minimum
execution time of the application with the help of rescheduling the
computation away from: overloaded computing nodes, nodes with
overloaded communication links that can slow down the compu-
tation and it also considers the addition of new nodes to increase
the performance of the application. Further, algorithm also pro-
vides load balancing by supporting rescheduling of tasks form
overloaded resources.

The rest of the paper is organized as follows. We brieflymention
the related work in Section 2. Section 3, describes the mathematical
model, including the resource model, task model along with the
problem definition. Thereafter, in Section 4, we explain the pro-
posed Adaptive workflow Scheduling algorithm. Section 5 includes
the pseudo code of the algorithm and detailed example. Section 6
discusses the simulation and result analysis. Finally section 7,
gives the conclusion.

2. Related work

The problem of scheduling in grid, for workflow (DAG-based)
tasks has already been addressed in the literature. Most of the
related work attempt to achieve the minimum execution time
(makespan) on heterogeneous grid environment. To schedule
scientific workflow applications, Heterogeneous Earliest Finish
Time (HEFT) [29], is the most popular list based heuristic. It orders
the workflow tasks based on priorities and then assign them to
suitable resources to achieve high performance. Similarly another
list based heuristics Minemin, MaxeMin [22], Critical-Path-on-a-
processor (CPOP) [29] are studied to achieve high performance.
The PCH algorithm [5] uses a hybrid clustering-list-scheduling
strategy, where tasks with heavy communication cost are group-
ed together and assigned to the same resource in a cluster. It aims
to reduce the schedule length by reducing the communication
cost. Further, the paper [14] describes the design, development
and evolution of the Pegasus Workflow Management System,
which maps abstract workflow descriptions onto distributed
computing infrastructures in order to achieve reliable and scalable
workflow execution.

The critical issue in list heuristics for DAG scheduling is the
accurate prediction for both the computation and the communi-
cation costs. However, in a real grid environment, system is less
reliable and more dynamic: individual resource capability varies
over time due to internal or external factors, thus, it is difficult to
estimate these values accurately. To deal with resource dynamicity,
two types of approaches are proposed in literature: dynamic
scheduling and adaptive scheduling. In dynamic scheduling, all
tasks are scheduled at run time while in adaptive scheduling; an
advance static schedule is generated using available estimates and
schedules responds to changes at run time with the help of
rescheduling. GrADS [4] is the typical rescheduling mechanism
which schedules workflow grid tasks based on three popular
heuristics of Minemin, Max-min and Suffrage. It focuses on itera-
tive workflows, allowing system to perform rescheduling at each
iteration. Rescheduling is activated by contract violation between
user and resource provider. If the performance is expected by
migration, then unexecuted jobs are migrated to new mapped
resources.

Other rescheduling methods proposed are AHEFT [31] and
SLACK [26]. In AHEFT, author proposed an adaptive rescheduling
algorithm based on static strategy. Here the workflow planner
adapts to grid dynamics with the help of run time executor.
Rescheduling is performed on the basis of FEA, which is the earliest
time when output file is available for dependent tasks, if perfor-
mance increase is there. While in SLACK [26] it is using the concept
of spare time, which does not affect the schedule length of the
workflow. If execution time of task goes beyond the spare time then
only selective rescheduling event is triggered. The major drawback
of these studies is that rescheduling is performed on periodic basis
on performance degradation. Moreover, during rescheduling initial
information of grid resources is used, without reflecting dynami-
cally updated information.

Another approach to deal with dynamic performance changes of
grid resources is proposed in [6] which uses the path clustering
heuristic (PCH) to generate the initial schedule and then round
based approach is used to reschedule. On each round some of the
tasks based on a criterion are sent to execute and then performance
of the resource is measured in that round. If performance is below
the threshold value, then the algorithm reschedules the non
executed tasks. In [11] the author proposed the adaptive list
scheduling service algorithm (ALSS) for workflow tasks in order to
deal with dynamic nature of service oriented grid environment.
Low overhead rescheduling is considered only for services on the

R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256e269 257



Download English Version:

https://daneshyari.com/en/article/480231

Download Persian Version:

https://daneshyari.com/article/480231

Daneshyari.com

https://daneshyari.com/en/article/480231
https://daneshyari.com/article/480231
https://daneshyari.com

