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a b s t r a c t

This paper considers the problem of locating a single semi-obnoxious facility on a general network, so as
to minimize the total transportation cost between the new facility and the demand points (minisum), and
at the same time to minimize the undesirable effects of the new facility by maximizing its distance from
the closest population center (maximin). The two objectives employ different distance metrics to reflect
reality. Since vehicles move on the transportation network, the shortest path distance is suitable for the
minisum objective. For the maximin objective, however, the elliptic distance metric is used to reflect the
impact of wind in the distribution of pollution. An efficient algorithm is developed to find the nondom-
inated set of the bi-objective model and is implemented on a numerical example. A simulation experi-
ment is provided to find the average computational complexity of the algorithm.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Stricter environmental standards and increasing public aware-
ness compels production engineers and urban designers to pay
more attention to sustainability and human health issues when
placing new materials or facilities into the environment, especially
when they have adverse effects on people. Some examples of these
semi-obnoxious facilities are power plants, chemical plants, waste
dumps or airports as listed in Melachrinoudis and Xanthopulos
(2003). From the pollution point of view, these facilities should
be located as far as possible from population centers to minimize
the risk of hazards but this will increase the transportation cost,
which is not acceptable. This contrasting nature led many
researchers to study this problem as a push–pull bi-objective mod-
el (Eiselt and Laporte, 1995).

In most studies of push–pull facility location models, research-
ers have used the same distance metric for both push and pull
objectives. But as pointed out in Ohsawa and Tamura (2003), the
odor and noise do not spread according to road maps. They also
do not distribute equally in different directions but come from
the pollution source along the wind direction. Ohsawa and Tamura
(2003) presented a bi-objective model with elliptic maximin and
rectilinear minisum objectives on the plane. Using elliptic distance
that can model dispersion of pollution according to prevalent wind
speed and direction made maximin function more realistic.

However rectilinear distance does not model realistically the mini-
sum objective, since vehicle movement takes place on a general
transportation network more often than along two perpendicular
directions according to Manhattan metric.

In this paper we model realistically the problem of locating a
single semi-obnoxious facility on a transportation network using
two objectives. The first objective is to minimize the total transpor-
tation cost between the new facility and the demand points, ex-
pressed as a sum of weighted network distances (minisum). The
second objective is to minimize the undesirable effects introduced
by the new facility, expressed as maximizing the minimum elliptic
distance between the new facility and population centers (maxi-
min). So the distance metric for the maximin objective is elliptic
and for the minisum objective is shortest path.

Employing the elliptic distance in a network solution space pre-
sents a challenge. Although network topology and edge lengths
information is sufficient for deriving the shortest path distance be-
tween any two points of the network, the Euclidean distance and
its generalized form, the elliptic distance, require that the network
be embedded on the Euclidean plane for these distances to be ex-
pressed. Thus, the use of mixed metrics in this paper forces us to
work on both the network space and the Euclidean space.

In the remainder of this paper, we first present a literature re-
view of the semi-obnoxious facility location problem in Section 2,
and then formulate the problem as a network minisum-elliptic
maximin model in Section 3. In Section 4 we investigate the charac-
teristics of both objectives and introduce two lemmas that enable us
to fathom inefficient solutions. An algorithm is presented at the end
of Section 4. A numerical example is presented in Section 5 to illus-
trate the use of the algorithm and computational experiments are
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conducted in Section 6 to demonstrate the polynomial average
computational complexity of the algorithm.

2. Literature review

All works in the bi-objective semi-obnoxious facility location
literature limit their study either on the plane or on the network
and the majority of them use the same distance metric for both
the pull and push objectives.

Among these studies, planar models dominated the literature in
the past four decades. In the first published study, Mehrez et al.
(1985) consider a weighted objective function, which combines
both rectilinear minimax and maximin objectives. Brimberg and
Juel (1998a) develop a model with two minisum objectives in
Euclidean space and minimize the weighted sum of these two
objectives, with weights adding to one. They use the traditional
Euclidean distance minisum objective to represent the transporta-
tion cost and another minisum objective of the negative powers
of Euclidean distances, to represent an aggregate undesirable effect.
They propose a heuristic based on a branch and bound algorithm
called Big Square Small Square (BSSS) to solve their model. Mela-
chrinoudis (1999) uses Fourier–Motzkin elimination to solve the
bi-objective rectilinear minisum–maximin model, taking advan-
tage of the small size of the resulting linear bi-objective problems.
Plastria and Carrizosa (1999) use an approach based on locating an
open disk in a network or plane. The first objective is to reduce the
affected population, in other words to minimize the coverage, and
the second objective is to increase the radius of the disk of affected
points, in order to raise the level of legal protection or to use less
costly technology for the facility. Ohsawa (2000) proposes an algo-
rithm based on nearest point and farthest point Voronoi diagrams
to find the efficient set of a Euclidean maximin–minimax location
problem. Melachrinoudis and Xanthopulos (2003) solve a Euclidean
minisum–maximin model using the Voronoi diagram and the K-K-T
optimality conditions. Yapicioglu et al. (2007) use Particle Swarm
Optimization (PSO) metaheuristic to solve a bi-objective model.
Their first objective is the traditional weighted minisum, while
the second objective is minimizing the total undesirable effect of
the new facility to inhabitants, measured as a piecewise linear func-
tion of their distances. Karasakal and Nadirler (2008) propose a
three-phase algorithm, called Interactive Generalized Big Square
Small Square (IGBSSS) method, for the solution of a rectilinear
maximin–minisum facility location problem. After fathoming the
inefficient parts of the feasible region in the first two phases, named
Rough cut and Precise cut, in the third phase they suggest an inter-
active search in the remaining regions with the involvement of a
DM in order to find the most preferred efficient solution.

Unlike planar models, there are not many network models for
the bi-objective semi-obnoxious facility location problem.
Hamacher et al. (2002) formulate a negatively correlated maxi-
sum–minisum semi-obnoxious facility model with weighted
shortest path network distances and generalize their result to
incorporate maximin and minimax objectives. Skriver and Ander-
sen (2003) consider the model of Brimberg and Juel (1998a) in
two separate cases of planar and network solution space. They em-
ploy an adaptation of BSSS, namely, Edge Dividing (ED) method, to
solve the network case. They divide each edge in two sub-edges
and calculate the bounds on the objective function values on each
sub-edge. If the bounds of a sub-edge are dominated by a sample
set of objective values, then the sub-edge is dominated. For a com-
prehensive review of multi-objective facility location problems and
semi-obnoxious facility location problems see Farahani et al.
(2010) and Melachrinoudis (2011), respectively.

We only found four papers in the bi-objective semi-obnoxious
facility location literature where different distance metrics are

used for different objectives. In their bi-objective model, Brimberg
and Juel (1998b) use as first objective the minisum of weighted
distances with an arbitrary norm and as second objective the tra-
ditional weighted Euclidean maximin. They present two reformu-
lations with two different solution methods, but only one of
them is guaranteed to find the complete set of efficient solutions.
In the second paper, Blanquero and Carrizosa (2002) consider the
traditional Euclidean maximin for the obnoxious objective but for
transportation cost, instead of using the traditional minisum, they
define a general cost function to be minimized. They offer an algo-
rithm based on decomposing the problem to a set of subproblems,
defined over Voronoi cells, to find the e-efficient set of the problem.
In the third paper, Skriver and Andersen (2003) consider the model
presented in Brimberg and Juel (1998a) but instead of Euclidean
distances, they use different norms for distance metrics of the
objectives. For finding the efficient set, instead of combining the
two objective functions, they provide an approximation algorithm
for the bi-objective model based upon BSSS. In the fourth paper,
Ohsawa and Tamura (2003) formulate the case of elliptic maximin
and rectilinear minisum problem and solve it by decreasing the
dimension of decision space from two to one and applying a
four-step algorithm to this new space. The solution space in all
models above is the plane. Although the use of network distances
for transportation cost, and planar distances for the obnoxious
objective function has been suggested as future research in various
papers in the past two decades (Boffey and Karkazis, 1995; Skriver
and Andersen, 2003; Yapicioglu et al., 2007), there is no published
work in the location literature where planar and network distances
are practically combined in a bi-objective model.

3. Problem formulation

Let G(V, E) be a finite, connected, undirected and weighted
graph representing a transportation network with node set V and
edge set E. The transportation network is within a bounded
geographical area, such as a county or state. The node set V is the
union of three sets, (i) the set of boundary points H that represent
intersections of roads with the boundary of the geographical area,
(ii) the set of demand points P representing existing facilities, and
(iii) the set of nodes that represent road intersections R, i.e.,
V = H [ P [ R. For example, P = {1, 2, 3, 4}, R = {5, 6}, and
H = {7, 8, 9, 10} in Fig. 1a. Each node i e P has a non-negative
weight wi, representing its demand. Elements of edge set E are
unordered pairs of distinct nodes that represent roads. Two nodes
p and q in V are adjacent if (p, q) e E. Each edge (p, q) has a positive
weight c(p, q) representing road length.

Consider a Euclidean plane that contains the geographical area
on which population centers are defined as points Cl = (al, bl), l e L.
Let us now embed the graph G(V, E) onto this plane so that the
elliptic distance can be defined between a point of the graph and
a population center which is not necessarily located on the graph.
This is necessary in order to quantify the impact of the semi-
obnoxious facility as a function of distance. Each node i e V can
be also considered a point with coordinates xi and yi on the Carte-
sian plane, or Ui = (xi, yi). In other words, while i represents a node
on graph G, Ui represents its geographical location on the plane.
Some demand points may be at the same geographical location
as population centers. Similarly, corresponding to each edge
(p, q) e E, there is a road which connects two points Up and Uq on
the plane. As some roads such as (2, 5) and (1, 5) in Fig. 1a, are arbi-
trary curves rather than straight lines, calculating the elliptic dis-
tance between a point on those roads and a population center is
not straightforward. To make our calculations easy, we linearly
approximate the roads of the network. This will introduce some
artificial nodes (e.g. nodes 11 and 12 in Fig. 1b) and new edges
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