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a b s t r a c t

This paper investigates the impact of surface energy and thermal loading on the static stability of
nanowires. We model nanowires as curved fixedefixed Euler-Bernoulli beams and use Gurtin-Murdoch
model to represent surface energy. The model takes into account both von K�arm�an strain and axial strain.
We derive the nanowire equilibrium equations and deploy it to investigate the buckling of nanowires.
We report the wire rise, critical buckling loads, and buckled wire configurations as functions of axial load
in the presence of thermal loads. We found that surface energy has significant effect on the behaviour of
silicon nanowires of diameter less than 4 nm. We also found that critical buckling load increases with
increase in surface tensile stress and decreases with thermal loading.

Copyright © 2014, Karabuk University. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Nano materials have been the interest of many researchers over
the past decade due to their enhanced properties. The difference in
bonding forces between atoms on the surface and those in the
material bulk results in changes in surface energies, mechanical,
and electrical properties. For nanostructures, the surface to volume
ratio is significant which gives rise to the effects of surface energy
[1,2]. This surface effect includes the effects of surface stress,
oxidation layer, and surface roughness which can result in
increasing the elastic modulus as much as three times as that of the
material bulk [3].

It has been experimentally validated that the material size has
a direct effect on its mechanical properties such as Young's
modulus and flexural rigidity. He and Lilley [4,5] studied the
surface effect on the elastic behaviour and the resonant fre-
quency of bending for nanowires at different boundary condi-
tions. Wong et al. [6] have experimentally measured the Young's
modulus for silicon carbide nanorods while it was dynamically
measured by Poncharal et al. [7]. Cuenot et al. [8] introduced
surface stress to study the bending behaviour of nanowires. Jing
et al. [3] measured the elastic properties of silver nanowires of
different diameters. They found that Young's modulus decreases

with increase in wire diameter, and they attributed that to the
surface effect.

Classical continuum models do not take into account the effects
of surface stresses and thus fail to present accurate models for such
cases [2]. To account for surface energy effects, Gurtin andMurdoch
[9] developed a surface elasticity theory for isotropic materials. In
their model, the surface layer of a solid is treated as a membrane
perfectly bonded to the material bulk. Lu et al. [10] modified the
Gurtin-Murdoch model to develop a theory for modelling thin
plates including surface effects. Surface energy effects on nano-
structures have been studied by many researchers over the past
decade. Bending properties of nanowires have been studied by Yun
and Park [11] and Zhan et al. [12]. Liu and Rajapakse [13] presented
closed-form solutions of static and free vibrating nanobeams under
different boundary conditions considering surface stresses.
Gheshlaghi and Hasheminejad [14] found exact solutions of the
natural frequency of simply-supported nanobeams considering
surface energy. Further, they used a dissipative surface stressmodel
to study the effect size on natural frequencies of vibrating nano-
wires using Euler-Bernouli beammodel [15] and Timoshenko beam
model [16].

Since carbon nanotubes have significant waviness and curvature
along the nanotubes length [17], it necessitates the consideration of
curvature in the analysis of nano structures. Moreover, nano-
structures can be exposed to different environmental and loading
conditions, thus it is important to consider the effects of external
thermal loads that may arise in such circumstances. In particular,
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the static stability of nanowires under thermal and mechanical
loads is an important consideration since the wires undergo qual-
itatively large deformations once they undergo the pitch-fork
bifurcation known commonly as buckling. Wang and Feng [18]
studied the buckling of nanowires under uniaxial compression
taking into account the effect of surface energy and residual surface
tension. Wang and Yang [19] studied the effect of residual surface
stress and surface elasticity on the post buckling state of nanowires
under larger deflections using the shooting method.

Considering nonlocal elasticity, Mahmoud et al. [2] presented a
static analysis of nanobeams including surface effects using the
finite element method. Mohammadi et al. [17] studied the static
instability of a curved nonlocal nanobeam on elastic foundation.
Thongyothee and Chucheepsakul [20] investigated the post buck-
ling of nanorods subjected to an end concentrated load, accounting
for surface energy and nonlocal elasticity. They found that surface
stress significantly increases structural stiffness and thus results in
resisting post buckling load and end displacement. Lee and Chang
[21] studied buckling of a cantilever nanowire with varying diam-
eter considering surface effects and employing nonlocal elasticity.
They found that the influence of surface effects on the critical
buckling load is significant. Tounsi et al. [22,23] studied the thermal
buckling of straight nanobeams where they employed a high-order
beam theory using nonlocal elasticity. Further, using a nonlocal
Timoshenko beammodel, Semmah et al. [24] found that the critical
buckling temperature is dependent on the chirality of zigzag carbon
nanotubes.

To the knowledge of the authors, buckling analysis of curved
nanowires under thermal loading and considering surfaces forces
has not been addressed in literature. This work presents an effort
towards investigating such conditions. In the present work, amodel
is developed to study the static buckling behavior of curved
nanobeams under thermal loads, taking into account the surface
effects. The beam is modelled as an Euler-Bernoulli beam with
curvature, incorporating the surface constitutive relations of Gurtin
and Murdoch. The mathematical model is presented in Section 2.
Section 3 shows the results and parametric studies. Concluding
remarks are then given in Section 4.

2. Model

Based on kinematic assumption of Euler-Bernoulli beam
including nonlinear von K�arm�an strain (midplane stretching) and
thermal strain, the axial strain of curved wire can be described by.

εxx ¼ vu
vx

þ 1
2

�
vw
vx

�2
þ vw

vx
vw0

vx
� athDT � z

v2w
vx2

¼ ε0 þ zkx (1)

where u,w and w0 are the axial displacement, transverse
displacement, and initial rise of a generic point along the beam axis
relative to the mid-plane. ath and DT are, respectively, the thermal
expansion coefficient of the nanowire and temperature difference
between the wire and environment. The parametersε0 and kx are
the longitudinal and bending strains, respectively, which are
described by
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The force resultant N and bending moment resultant M due to
normal stress sxx can be described as.

N ¼
Z
A

sxxdA ¼ EAε0 (3.a)

M ¼
Z
A

zsxxdA ¼ EIkx (3.b)

where I is the second areamoment,A is the cross sectional area, and
E is Young's modulus. Using the principle of virtual displacement,
we obtain
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where q and f are transverse and axial distributed forces (measured
per unit length), and P is an applied axial compressive force at the
boundaries. Substituting Eq. (3) into Eq. (4), the following equilib-
rium equations can be derived:
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According to Gurtin-Murdoch model, the constitutive relations
of the surface can be expressed as
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where t0 is the residual surface stress under no-load conditions, h is
the thickness, andm0 and l0 are surface Lam�e's constants, which can
be determined from atomistic calculations. According to Euler
beam theory, the stress componentszz is small and thus neglected.
However, szz must be considered to satisfy the surface equilibrium
which is assumed to vary linearly through the beam thickness [13]

szz ¼ 2zt0
h

v2w
vx2

(7)

Now, including the surface stress componentszz of bulk stress of
the nanobeam yields.

sxx ¼ Eεxx þ yszz (8)

where E and y are Young's modulus and Poisson's ratio,
respectively.

Neglecting distributed axial and transverse forces q and f, the
equilibrium equation of a clampedeclamped curved nanowire of
length L including an axial force at the boundary P, an axial thermal
load, and surface stress effects can be described by [9,13]�
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subject to the boundary conditions
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