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a b s t r a c t

A stationary independent increment process is an uncertain process with stationary and independent
increments. This paper aims to calculate the variance of stationary independent increment processes,
and gains that, for each fixed time, the variance is a constant multiplying the square of time. Based on
this result, it is proved that the total variation of stationary independent increment process with finite
variance is bounded almost surely. Besides, the quadratic variation of stationary independent increment
process with finite variance is 0 almost surely and in mean.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

A stochastic process is a family of random variables from some
probability space into a state space. A stochastic process is called
Lévy process if it is continuous in probability and has stationary
and independent increments. Lévy process is basic in the study of
stochastic process admitting jumps. It is well known that Brownian
motion, Poisson process, Cauchy process and C-process are all
examples of Lévy processes. Main original contributions to the
theory of Lévy processes are Levy (1934), Khintchine (1937), and
Ito (1942) in 1930s and 1940s. The Lévy–Khintchine representation
theorem shows that Lévy process can be decomposed to three inde-
pendent parts (see Sato, 1999). The variance of Lévy process with
finite variance has linearity property, namely the variance of Lévy
process can be expressed as a constant multiplying time. Besides,
the variation of Lévy process is also a fundamental problem. As an
example of Lévy process, total variation of Brownian motion is infi-
nite and the quadratic variation is s on the interval [0, s] (see Freed-
man, 1983; Karatzas and Shreve, 1991; Kallenberg, 1997). However,
as another example of Lévy process, the total variation of Poisson is
finite and the quadratic is also finite.

In fact, stochastic process is a tool to deal with dynamical ran-
dom phenomena based on probability theory. Besides probability
theory, fuzzy set theory, rough set theory and credibility theory
are all introduced to describe non-deterministic phenomena. How-
ever, in our daily life, some of the non-deterministic phenomena
expressed by the language like ‘‘about 100 km’’, ‘‘approximately
39 �C’’, ‘‘big size’’ behave neither like randomness nor like fuzzi-
ness. This promotes Liu (2007) to found uncertainty theory, which
is a branch of mathematics to deal with human uncertainty based

on normality, duality, subadditivity and product axioms. In many
cases, the uncertainty is not static, but changes over time. In order
to portray dynamic uncertain systems, uncertain process was first
introduced by Liu (2008). An uncertain process is essentially a se-
quence of uncertain variables indexed by time or space. Later,
uncertain calculus was proposed by Liu (2009), and the uncertain
differential equation driven by canonical process was introduced
by Liu (2008). After that, Chen and Liu (2010) proved the existence
and uniqueness theorem for uncertain differential equation. Mean-
while, uncertain differential equation has been applied to uncer-
tain optimal control by Zhu (2010), American option pricing by
Chen (2011), and other option pricing model by Peng and Yao
(2010). Besides, uncertainty theory has been studied by many
other researchers Gao (2009), Huang (2011), You (2009), and
Zhang (2011).

The concept of stationary independent increment process was
proposed by Liu (2008). The canonical process introduced by Liu
(2009) and the semi-canonical process introduced by Gao (2011)
are examples of stationary independent increment process. Be-
sides, Gao (2011) discussed the properties of the total variation
and quadratic variation of semi-canonical process.

In order to discuss the variation of stationary independent
increment process, this paper will first discuss the variance of it.
Fortunately, we get that the variance of a stationary independent
increment process is a constant multiplying the square of time,
namely its standard deviation is a constant multiplying the time.
Based on this property, we will prove that the total variation of
the stationary independent increment process is finite on any
bounded interval almost surely, that is, almost all the sample paths
of it are of bounded total variation, or almost all the sample paths
have finite length on any bounded interval. This property is differ-
ent from Lévy process, Brown motion as an example of Lévy
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process has infinite length sample paths on any bounded intervals.
Besides these, the quadratic variation of stationary independent
increment process is also studied, and we also gain that the qua-
dratic variation of stationary independent increment process is 0
almost surely and also in mean. However, the quadratic variation
of Brownian motion converges to s on the interval [0, s]. Therefore,
properties of stationary independent increment process in stochas-
tic process and in uncertain process are totally different.

The rest of the paper is organized as follows. Some preliminary
concepts of uncertainty theory are recalled in Section 2. The vari-
ance of stationary independent increment process is calculated in
Section 3. The total variation of stationary independent increment
process is discussed in Section 4. The quadratic variation of station-
ary independent increment process is studied in Section 5. At last, a
brief summary is given in Section 6.

2. Preliminary

Uncertain measureM is a real-valued set-function on a r-alge-
bra L over a nonempty set C satisfying normality, duality, subad-
ditivity and product axioms. The triplet ðC;L;MÞ is called an
uncertainty space.

Definition 1. Liu (2007). An uncertain variable is a function from
an uncertainty space ðC;L;MÞ to the set of real numbers, i.e., for
any Borel set B of real numbers, the set

fn 2 Bg ¼ fc 2 CjnðcÞ 2 Bg

is an event.
The uncertainty distribution function U : R! ½0;1� of an uncer-

tain variable n is defined as UðxÞ ¼ Mfn 6 xg. The expected value
of an uncertain variable is defined as follows:

Definition 2. Liu (2007). Let n be an uncertain variable. Then the
expected value of n is defined by

E½n� ¼
Z þ1

0
Mfn P rgdr �

Z 0

�1
Mfn 6 rgdr

provided that at least one of the two integrals is finite.
Let n and g be independent uncertain variables with finite ex-

pected values. Then for any real numbers a and b, we have

E½anþ bg� ¼ aE½n� þ bE½g�:

If n is an uncertain variable with finite expected value e, then
the variance of n is defined as Var[n] = E[(n � e)2], and the standard
deviation is defined as D½n� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½n�

p
. The formula to compute the

variance of uncertain variable n using its uncertainty distribution
U is

V ½n� ¼
Z þ1

e
2ðx� eÞð1�UðxÞÞdxþ

Z þ1

e
2ðx� eÞWðxÞdx ð1Þ

where e is the expected value of n. Liu (2007) proved the Markov
inequality for uncertain variable. Then for any given number t > 0
and p > 0, we have

MfjnjP tg 6 E½jnjp�
tp :

Definition 3 Liu (2008). Let T be an index set and let ðC;L;MÞ be
an uncertainty space. An uncertain process is a measurable
function from T � ðC;L;MÞ to the set of real numbers, i.e., for
each t 2 T and any Borel set B of real numbers, the set

fXt 2 Bg ¼ fc 2 CjXtðcÞ 2 Bg

is an event.

From the definition of uncertain process, we know that jXtj < +1
almost surely for all t P 0. An uncertain process Xt(c) is a function
of time t and c. For each a fixed time t�;Xt� is an uncertain variable.
For each fixed c⁄, the function Xt(c) is called a sample path of uncer-
tain process Xt. An uncertain process is said to be sample-continu-
ous if almost all sample paths are continuous with respect to t.

Definition 4. An uncertain process Xt is called continuous in
measure if it satisfies

lim
t!s
MfjXt � XsjP eg ¼ 0

for any e > 0.

Definition 5. Liu (2008). An uncertain process Xt is said to have
independent increments if

Xt0 ;Xt1 � Xt0 ;Xt2 � Xt1 ; . . . ;Xtk
� Xtk�1

are independent uncertain variables where t0 is the initial time and
t1, t2, . . . , tk are any times with t0 < t1 < � � � < tk.

Definition 6. Liu (2008). An uncertain process Xt is said to have
stationary increments if, for any given t > 0, the increments
Xs+t � Xs are identically distributed uncertainty variables for all
s > 0.

Definition 7. Liu (2011). An uncertain process Xt is said to be sta-
tionary independent increment process if it has stationary and
independent increments.

Liu (2011) proved that the expected value of stationary inde-
pendent increment process Xt is E[Xt] = a + bt where a = E[X0] and
b = E[X1] � a.

3. Properties of the variance

In this section, we will study the property of the variance of sta-
tionary independent increment process. Firstly, we will introduce
one theorem that will be used later.

Theorem 1. Suppose that n and g are two independent uncertain
variables. Assuming that there exists a nonnegative real number a such
that n and ag have the same uncertainty distribution U, then the
standard deviation satisfies

D½nþ g� ¼ D½n� þ D½g�:

Proof. Suppose that E[n] = E[ag] = e, then the expected value of
n + g is aþ1

a e. Since

Mfg 6 xg ¼ Mfn=a 6 xg; ð2Þ

we get the uncertainty distribution of n + g is

WðxÞ ¼ Mfnþ g 6 xg ¼ sup
x1þx26x

Mfn 6 x1g ^Mfg 6 x2g

¼ sup
x1þx26x

Uðx1Þ ^Uðax2Þ ¼ Uðax=ð1þ aÞÞ:

Using the formula (1), we have

Var½nþg� ¼
Z þ1

1þae
a

2 r�1þ ae
a

� �
ð1�WðrÞÞ þW

2ð1þ aÞe
a

� r
� �� �

dr

¼
Z þ1

ð1þaÞe
a

2 r� ð1þ aÞe
a

� �
1U

ra
ð1þ aÞ

� �� �
dr

þ
Z þ1

ð1þaÞe
a

2 r� ð1þ aÞe
a

� �
U

2ð1þ aÞe
a

� r
a

1þ a

� �
dr
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