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a b s t r a c t

We study the problem of computing the sharpest static-arbitrage upper bound on the price of a European
basket option, given the bid–ask prices of vanilla call options in the underlying securities. We show that
this semi-infinite problem can be recast as a linear program whose size is linear in the input data size.
These developments advance previous related results, and enhance the practical value of static-arbitrage
bounds as a pricing technique by taking into account the presence of bid–ask spreads. We illustrate our
results by computing upper bounds on the price of a DJX basket option. The MATLAB code used to com-
pute these bounds is available online at www.andrew.cmu.edu/user/jfp/arbitragebounds.html.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Computing bounds for option prices under incomplete market
condition, or under incomplete knowledge of the distribution of
the price of the underlying assets is a widely studied pricing tech-
nique, where in contrast to parametric pricing techniques, such as
Monte Carlo simulations, strong assumptions about the underlying
asset price distribution are not required (e.g., consider the recent
work of Chen et al. (2011), Primbs (2010), Zuluaga et al. (2008)
and Bertsimas and Shah (2008)). These type of bounds provide a
mechanism for checking consistency of prices (see, e.g., De la Pena
et al., 2004; Hobson et al., 2005a,b), and provide robust estimates
for option prices in incomplete market conditions, or regardless
of any model specifics. Also, these bounds are useful when the
number of underlying assets makes the computation of parametric
prices numerically challenging. Here, we study the problem of
computing arbitrage bounds; that is, computing bounds on the
price of an option given the only assumption of absence of arbi-
trage, and information about prices of other options on the same
underlying assets. More specifically, we study the problem of com-
puting the sharpest upper bound on the price of a European basket
option, given the only assumption of absence of arbitrage, and

information on the bid–ask prices of vanilla European call options
on the same underlying assets and with the same maturity. Bounds
of this type are called static-arbitrage bounds.

The computation of sharp static-arbitrage upper bounds can be
formulated as the problem of finding the least expensive portfolio
of cash and the options with known prices whose combined payoff
super-replicates the payoff of the new basket option of interest
(see, e.g., d’Aspremont and El Ghaoui, 2006; Hobson et al.,
2005b). This problem has received a fair amount of attention in re-
cent years. Of particular relevance to our work are the recent arti-
cles by Albrecher et al. (2008), d’Aspremont and El Ghaoui (2006),
Davis and Hobson (2007), Hobson et al. (2005a,b), Laurence and
Wang (2005, 2008, 2009) and Peña et al. (2010). In these articles,
when formulating the static-arbitrage bound problem, it is as-
sumed that the options can be bought and sold at the same price.
In practice the ask price, the price at which an investor buys the op-
tion, is higher than the bid price, the price at which the investor can
sell the option. This gives rise to the so-called bid–ask spread. Our
approach readily incorporates the use of bid and ask prices in the
computation of the super-replicating strategy, thus giving more
practical value to the static-arbitrage pricing approach. In particu-
lar, this resolves a major limitation in previous approaches (see,
e.g., d’Aspremont and El Ghaoui, 2006; Hobson et al., 2005b) that
used mid-market prices (e.g., the average of the bid and ask prices)
as the ‘‘nominal’’ option prices. Such approximation systematically
underestimates the actual buying prices and overestimates the
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actual selling prices. It is then not surprising that the market data
used in d’Aspremont and El Ghaoui (2006) and Hobson et al.
(2005b) requires a fair amount of ‘‘cleaning’’ to rule out apparent
arbitrage opportunities created by these estimates (see Hobson
et al., 2005b, Section 6.2).

We undertake a novel approach to the static-arbitrage upper
bound problem based entirely on linear programming duality.
The foundational block of our work is the construction of an effi-
cient (linear-size) polyhedral description for the set of super-repli-
cating portfolios, that is, the set of portfolios of cash and the given
options whose payoff super-replicates the basket option’s payoff.
We show that the set of super-replicating portfolios is a projection
of a polyhedron whose description only requires a number of vari-
ables and constraints that is linear in the number of given options
(see Theorem 1). Although it is intuitively clear that the set of
super-replicating portfolios admits a polyhedral description,
straightforward attempts to do so yield intractable descriptions
that require a number of constraints and variables that is exponen-
tially large in the number of given option prices. It is worth men-
tioning that these results have been the foundation behind the
results developed in Jabbour et al. (2008), Peña et al. (2010) and
Peña et al. (2010).

We note that the computation of static-arbitrage lower bounds
poses a different set of challenges as the nature of sub-replicating
portfolios is fundamentally different from that of the super-repli-
cating portfolios. The different nature of the upper and lower
bound computation has been recognized previously, as it was
apparent that the computation of the upper bounds was more trac-
table (see d’Aspremont and El Ghaoui, 2006; Hobson et al.,
2005a,b). In Peña et al. (2010), we present some results for the
computation of static-arbitrage lower bounds that are similar in
spirit to those discussed herein.

The paper is organized as follows. Section 2 formally presents
the problem of computing sharp static-arbitrage upper bounds on
a basket option, given the bid–ask prices of vanilla call options on
the underlying assets. Also, we present the main building block of
our approach; namely, an efficient polyhedral description of the
super-replicating portfolios. The latter yields the first efficient
linear programming formulation for the computation of static-
arbitrage upper bounds that incorporates bid–ask spreads. In Sec-
tion 3, we provide numerical experiments to illustrate some of
our results; namely, we compute bounds of the price of a DJX
basket option. The MATLAB code used to compute these bounds
is available online at www.andrew.cmu.edu/user/jfp/arbitrage-
bounds.html. Finally, Section 4 presents the proofs of the results
in the article.

2. Static-arbitrage upper bounds with bid–ask spreads

In this section we present an efficient linear programming
formulation for the static-arbitrage bound problem that takes into
account bid–ask spreads in the prices of the known options. Previ-
ous approaches to the computation of arbitrage bounds (see, e.g.,
d’Aspremont and El Ghaoui, 2006; Hobson et al., 2005a,b) ignore
this important feature and simply assume that the known options
can be bought and sold at a mid-market price. This constitutes a
major practical limitation as these mid-market prices are rarely
arbitrage-free. One of our numerical examples in Section 3 illus-
trates this phenomenon.

Consider the problem of computing a sharp upper static-
arbitrage bound on the price of a European basket option, given
information on the bid–ask prices of European vanilla options,
without making any assumptions other than the absence of
arbitrage. This problem can be formulated as the following
optimization problem:

inf
z;y;�y;y

zþ
Xn

i¼1

Xm

j¼0

�pij�yij �
Xn

i¼1

Xm

j¼0

pijyij

s:t: zþ
Xn

i¼1

Xm

j¼0

yijðsi � KijÞþ P
Xn
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 !þ
for all s 2 Rn

þ

y ¼ �y� y

y 2 Rn�ðmþ1Þ

�y; y 2 Rn�ðmþ1Þ
þ

z 2 R:

ð1Þ

Above, the multidimensional variable s represents the possible
prices of the n underlying assets (at maturity) in the basket. The
constants Kij 2 R, i = 1, . . . ,n, j = 0, . . . ,m, represent the strike price
of the call options with payoff (si � Kij)+:= maxf0; Si � Kijg whose
given ask (buying) and bid (selling) prices are �pij P p

ij
respectively.

The vector x 2 Rn and constant j 2 R represent the weights and
strike of the basket option with payoff

Pn
i¼1xisi � j

� �þ whose price
we want to bound. Notice that the assumption on the same num-
ber of options m per asset can be made without loss of generality:
If one of the assets has fewer than m options, we can artificially in-
crease the number of known options to m by repeating one of the
options.

Problem (1) has a natural financial interpretation: It finds the
cheapest portfolio of positions in cash (z) and in call options (yij)
with payoff (si � Kij)+, i = 1, . . . ,n, j = 0, . . . ,m that super-replicates
the payoff of the basket option with payoff

Pn
i¼1xisi � j

� �þ.
Following d’Aspremont and El Ghaoui (2006), we implicitly as-

sume that all the options have the same maturity, and that the
risk-free interest rate is zero; or equivalently, we compare the
prices in the forward market (at maturity).

2.1. Super-replication of a linear payoff

Now we present the main building block of our approach;
namely, an efficient polyhedral description of the super-replicating
constraint (first constraint) in problem (1). The latter yields the
first efficient linear programming formulation for the computation
of static-arbitrage upper bounds that incorporates bid–ask spreads.

For ease of notation, let us first rewrite problem (1) in ‘‘vector
form’’. That is,

inf
z;y;�y;y

zþ
Xm

j¼0

�pj � �yj �
Xm

j¼0

pj � yj

s:t: zþ
Xm
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þ

y ¼ �y� y

y 2 Rn�ðmþ1Þ

�y; y 2 Rn�ðmþ1Þ
þ

z 2 R;

ð2Þ

where aj denotes the vector [aij]i=1,. . .,n, and (�) denotes the dot (in-
ner) product of vectors.

Now, assume K ¼ ½K0 K1 � � � Km � 2 Rn�ðmþ1Þ; b 2 Rn and
c 2 R are given. Define the set of super-replicating strategies SR(K,
b, c) as follows

SRðK; b; cÞ :¼
�
ðy; zÞ ¼ ðy0; y1; . . . ; ym; zÞ 2 Rn�ðmþ1Þ � R : z

þ
Xm

j¼0

yj � ðs� KjÞþ P b � s� c for all s 2 Rn
þ

)
: ð3Þ
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