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a b s t r a c t

This article deals with the uncapacitated multiple allocation p-hub median problem, where p facilities
(hubs) must be located among n available sites in order to minimize the transportation cost of sending
a product between all pairs of sites. Each path between an origin and a destination can traverse any pair
of hubs.

For the first time in the literature, an integer programming formulation with O(n2) variables has been
devised to approach this problem. Based on this formulation, a branch-and-cut algorithm has been devel-
oped which allows to solve larger instances than those previously solved in the literature. The proposed
algorithm performs specially well for relatively large values of p.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Hub location problems

In a typical hub location problem, a set of n locations—points—is
given. Let N = {1, . . . ,n} be the set of indexes of these locations. For
each ordered pair of points (i, j) there is a quantity Wij P 0 of prod-
uct that needs to be sent from i to j. The key decision in this prob-
lem is which locations will be used as hubs, i.e., transshipment
points where the product will be collected and distributed.

In the multiple allocation version of the problem, once the hubs
have been fixed, each origin point i will be connected to each des-
tination point j, i, j 2 N, through an independent path that can tra-
verse one or two hubs. Moreover, if neither the origin nor the
destination are hubs, then the path will contain one or two inter-
mediate hubs; if either the origin or the destination (but not both
of them) is a hub, the flow between them either will be directly
sent or will traverse only one additional hub; finally, if both i
and j are hubs, then the flow will be directly sent from i to j without
using any other hub. Single allocation problems, where every point
must send and receive the product to and from a unique hub, have
also been broadly studied in the literature, but are out of the scope
of this paper.

The transportation costs of the system are calculated in the
following way. Any unit of product with origin in point i and

destination in point j that traverses hubs k and m in this order costs
cijkm P 0. When k = m, i.e., if there is only one hub in the path, the
cost is analogously denoted by cijkk. Particular cases like that in
which the origin i is a hub (with associated cost cijim) do not de-
serve more attention.

In the uncapacitated multiple allocation hub location problem (HL)
a fixed cost fk associated with the transformation of point k into a
hub has to be payed. The aim is to find the set of points to be trans-
formed into hubs and the paths associated with all the origin–des-
tination pairs such that the total cost (fixed plus transportation) is
minimized. The problem we are going to deal with, the multiple
allocation p-hub median problem (pH), only takes into account the
transportation costs whereas the number of hubs must be exactly
p. These two problems are closely related; in particular, most of the
integer programming formulations used for one of them can be
easily adapted to solve the other.

In many applications, costs cijkm are calculated using the
formula

cijkm ¼ dik þ adkm þ dmj; ð1Þ

where 0 < a < 1 is a discount factor between hubs (economies of
scale) and duv are costs associated with the links between points.
The more general formula cijkm = bdik + adkm + cdmj, with b P a and
c P a fixed amounts associated with collection and distribution,
respectively, is also frequently used in the literature. We will as-
sume here that costs are calculated using these formulas. Moreover,
we will suppose that costs d are distances or, at least, that they
satisfy the triangle inequality, dii = 0 "i and dij P 0 "i, j. As a
consequence, the limit of two hubs per path must not be imposed
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since it is always satisfied by at least one optimal solution of the
problem.

1.2. Literature

Many papers in the literature of discrete location are devoted to
the resolution of hub location problems. For an introduction to the
application fields and a review of hub location, we refer the reader
to [5,1], respectively. In the following we will only cite the papers
that are needed for a better understanding of this article.

The first integer programming formulations for both problems,
HL and pH, were presented by Campbell [3,4]. Binary variables yk

take value 1 if a hub is located at point k, whereas variables xijkm

measure the fraction of Wij sent through hubs k and m (in this or-
der). The formulation for HL is

ðCÞ min
X

i

X
j

X
k

X
m

Wijcijkmxijkm þ
X

k

fkyk

s:t:
X

k

X
m

xijkm ¼ 1 8i; j; ð2Þ

xijkm 6 yk 8i; j; k;m ð3Þ

xijkm 6 ym 8i; j; k;m ð4Þ

yk 2 f0;1g 8k; ð5Þ

xijkm P 0 8i; j; k;m: ð6Þ

Since formulation (C) contains n4 + n variables and 2n4 + n2 linear
constraints and its linear relaxation is weak, using it becomes a hard
task (see e.g. [13] for checking the difficulties when using dual
methods based on (C)). Formulation (C) can be adapted to pH just
by fixing fk = 0 "k and adding the constraintX

k

yk ¼ p: ð7Þ

We will call (Cp) this formulation for pH. Note that in all sums and
sets without any other specification, the indexes will vary from 1 to
n.

Skorin-Kapov et al. [16] and O’Kelly et al. [15] tightened con-
straints (3) and (4) in the context of pH, replacing them byX

m

xijkm 6 yk 8i; j; k; ð8Þ
X

k

xijkm 6 ym 8i; j;m: ð9Þ

By doing this replacement in formulation (C), the number of linear
constraints reduces from 2n4 + n2 to 2n3 + n2 and much better lower
bounds can be obtained using the linear relaxation associated with
the new formulation.

Cánovas et al. [7] and Hamacher et al. [12] carried out the defin-
itive reduction of constraints (8) and (9), replacing them byX

k

xijkm þ
X
k–m

xijmk 6 yk 8i; j; k; ð10Þ

so reducing the number of linear constraints to n3 + n2 and getting
even better bounds. We will call (CH) this formulation and (CHp)
the corresponding version for pH. Recent results on the resolution
of HL by means of (CH) can be consulted in [6,14], and very recent
results are available in [8], which succeeds in solving large scale in-
stances of HL using a Benders decomposition approach based on
(CH).

Concerning pH, it was formulated in [10,11] using three-index
variables. Their formulation, designed for transportation costs cal-
culated using (1), is

ðEKÞ min
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zik ¼ Oi 8i;

X
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nijm ¼Wij 8i; j;

X
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X

j

nij‘ ¼ zi‘ þ
X
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hik‘ 8i; ‘;

zik 6 Oiyk 8i; k;X
i

nijm 6 Djym 8j;m;

X
k

yk ¼ p;

yk 2 f0;1g 8k;

nijm; hikm; zik P 0 8i; j; k;m;

where Oi ¼
P

jWij; i 2 N, are the units of product which must be
sent from i; Dj ¼

P
iWij; j 2 N, are the units of product which must

be sent to j, and the three families of new variables have the follow-
ing meaning:

� zik is the amount of product going from origin i directly to hub k,
� hikm is the amount of product going from origin i directly to hub

k and then directly to point m, and
� nijm is the amount of product going from origin i to any hub and

then to hub m and finally to destination j.

1.3. The challenge

Formulations for HL and pH based on (Cp) use O(n4) variables
and, at least, O(n3) constraints. Although reduced versions of (Cp)
like (CHp) provide us with very good lower bounds and can be used
to solve medium sized instances (especially in the case of HL), they
are huge and require large amounts of memory and computational
effort. On the other hand, formulations based on three-index vari-
ables derived from (EK), while smaller, give poorer lower bounds.
The aim of the research line that gave rise to this article was to de-
velop, improve and use small formulations to solve pH, problem
which has not been solved in the literature so efficiently as HL.
In particular, we wanted to obtain a formulation with O(n2) vari-
ables that could be used to solve large instances. In this paper
we present such a formulation. Using it, we have been capable to
solve to optimality: (i) instances previously solved in the literature
with up to 40 points, many of them needing similar computational
times, (ii) larger instances with 50 points and any value of p, (iii)
very large instances with up to 200 points when the number of
hubs is large enough.

To the best of our knowledge, this is the first time that a formu-
lation with O(n2) variables has been applied to the multiple alloca-
tion p-hub location problem. However, there has been previous
work on a similar formulation for the single allocation p-hub med-
ian problem (see [9]).

The rest of the paper is organized as follows. In Section 2 we
present a new reduced formulation for pH. Based on the valid
inequalities generated in Section 3, we strengthen and reduce even
more the initial formulation in Section 4. All these improvements
are embedded into a branch-and-cut algorithm in Section 5. The
solution method is tested in Section 6 and, finally, some conclu-
sions are drawn in Section 7.
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