
European Journal of Operational Research 255 (2016) 34–42 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Discrete Optimization 

p -facility Huff location problem on networks 

✩ 

Rafael Blanquero 

a , ∗, Emilio Carrizosa 

a , Boglárka G.-Tóth 

b , Amaya Nogales-Gómez 

c , 1 

a Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, Spain 
b Budapest University of Technology and Economics, Hungary 
c Mathematical and Algorithmic Sciences Lab, Huawei France R&D, Paris, France 

a r t i c l e i n f o 

Article history: 

Received 21 January 2015 

Accepted 19 April 2016 

Available online 26 April 2016 

Keywords: 

Huff location problem 

Location on networks 

p -facility 

Difference of convex 

Global optimization 

a b s t r a c t 

The p -facility Huff location problem aims at locating facilities on a competitive environment so as to 

maximize the market share. While it has been deeply studied in the field of continuous location, in 

this paper we study the p -facility Huff location problem on networks formulated as a Mixed Integer 

Nonlinear Programming problem that can be solved by a branch-and-bound algorithm. We propose two 

approaches for the initialization and division of subproblems, the first one based on the straightforward 

idea of enumerating every possible combination of p edges of the network as possible locations, and 

the second one defining sophisticated data structures that exploit the structure of the combinatorial and 

continuous part of the problem. Bounding rules are designed using DC (difference of convex) and Interval 

Analysis tools. 

In our computational study we compare the two approaches on a battery of 21 networks and show that 

both of them can handle problems for p ≤ 4 in reasonable computing time. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Competitive location models ( Eiselt, Laporte, & Thisse, 1993; 

Plastria, 2001 ) were originally introduced by Hotelling (1929) , con- 

sidering the location of two competing facilities on a linear mar- 

ket. In the seminal work of Hotelling, users patronize the facil- 

ity closest to them. In contrast with this all ·or ·nothing assump- 

tion, it was introduced the Huff location model ( Huff, 1964 ), in 

which the probability that a user patronizes a facility is propor- 

tional to its attractiveness and inversely proportional to a power 

of the distance to it. The Huff location problem has been exten- 

sively studied in the field of continuous location ( Blanquero & Car- 

rizosa, 2009; Drezner & Drezner, 2004; Fernández, Pelegrín, Plas- 

tria, & Tóth, 2007; Huff, 1964; 1966 ) and successfully applied in 

the marketing field, in problems such as location of petrol stations, 

shopping centers or restaurants ( Ghosh, McLafferty, & Craig, 1995; 
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Okabe & Kitamura, 1997; Okunuki & Okabe, 2002 ). The natural ex- 

tension of this problem to that of locating p -facilities on the plane, 

has also received certain attention in the literature ( Drezner, 1998; 

Drezner, Drezner, & Salhi, 2002; Redondo, Fernández, García, & Or- 

tigosa, 2009a; 2009b; Tóth, Fernández, Pelegrín, & Plastria, 2009 ). 

Network optimization models ( Bertsekas, 1998 ) are widely used 

in practice due to their methodological aspects and intuitive for- 

mulations. They arise naturally in the context of assignment, flow, 

transportation or location problems among others. For a compre- 

hensive introduction to location models on networks see Labbé, 

Peeters, and Thisse (1995) . 

The combination of the Huff location problem and network op- 

timization has been already addressed in the literature ( Berman, 

Drezner, & Krass, 2011; Blanquero, Carrizosa, Nogales-Gómez, & 

Plastria, 2014 ) and applied to market area analysis ( Okabe & Ki- 

tamura, 1997 ) and demand estimation ( Okabe & Okunuki, 2001 ). 

The single-facility case has been solved in Berman et al. (2011) by 

means of Interval Analysis (IA) bounds, and in Blanquero et al. 

(2014) using IA and difference of convex (DC) bounds. Differ- 

ent metaheuristics have been proposed for the p -facility case in 

Roksandi ́c, Carrizosa, Uroševi ́c, and Mladenovi ́c (2012) , but no at- 

tempt has been made so far to address the multifacility case with 

exact methods. This lack of progress in the state of the art is 

due to the difficulty of the problem, caused by its combinato- 

rial component added to the continuous global optimization: one 

has to decide which edges are to contain facilities, and, for the 
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choice of edges given, the location is to be decided. Thanks to 

the recent results described in Blanquero, Carrizosa, and G.-Tóth 

(2015) , in which a new data structure is introduced to address 

multifacility location problems on networks via branch and bound 

algorithms, we solve in this paper the p -facility Huff location prob- 

lem on networks, formulated as a Mixed Integer Nonlinear Pro- 

gramming (MINLP) problem. 

The remainder of this paper is organized as follows. In 

Section 2 we set up the notation for networks and introduce the 

p -facility Huff location problem. In Section 3 , a branch-and-bound 

method with different initialization and branching rules is de- 

scribed. Section 4 is devoted to procedures for calculating lower 

and upper bounds. Computational results are reported in Section 5 , 

where the p -facility Huff location problem is solved using the dif- 

ferent branching and bounding rules for 12 real-life and 9 artificial 

networks. Finally, Section 6 contains a brief summary, final conclu- 

sions and some lines for future research. 

2. The model 

Let N = (V, E) be a network, with node set V and edge set E . 

The length of the edge e ∈ E is denoted by l e . The distance between 

two nodes a i , a j ∈ V is calculated as the length of the shortest path 

( Labbé et al., 1995 ) from a i to a j . For each e ∈ E , with end-nodes 

a i , a j , we identify each x ∈ [0, l e ] with the point in the edge e at 

distance x from a i and l e − x from a j . In this way, we obtain that, 

for any vertex a k ∈ V and x ∈ e , the distance d ( x , a k ) from x to a k , 

as a function of x , is a concave piecewise linear function, given by 

d(x, a k ) = min { x + d(a i , a k ) , (l e − x ) + d(a j , a k ) } . 
In the p -facility Huff location model, the finite set V of vertices 

of the network represents users, asking for a certain service. Each 

user a ∈ V has demand ω a ≥ 0, that is patronized by different 

existing facilities, located at points y 1 , . . . , y r on the network. The 

demand captured by facility at y i from user a is assumed to be 

inversely proportional to a positive nondecreasing function of the 

distance d ( a , y i ), namely, αai /( d ( a , y i )) 
2 is used as the utility or at- 

traction function of y i , where αai > 0 denotes the attraction that 

user a feels towards the facility at y i . Therefore, the demand cap- 

tured by the facility at y i from the user at a is given by 

ω a 
αai / (d(a, y i )) 

2 

∑ r 
j=1 αa j / (d(a, y j )) 2 

. (1) 

A new firm is entering the market, by locating p new facilities 

at some points x 1 , . . . , x p on the network. For simplicity, all new fa- 

cilities are assumed to have the same attractiveness αa > 0, which 

is fixed. The new facilities perturb how the market is shared, since 

the new facilities will capture part of the demand from a ∈ V , 

ω a 

∑ p 
j=1 

αa / (d(a, x j )) 
2 

∑ p 
j=1 

αa / (d(a, x j )) 2 + 

∑ r 
j=1 αa j / (d(a, y j )) 2 

. (2) 

Our goal is the maximization of the market share of the enter- 

ing firm. Thus, the problem we need to solve can be formulated 

as 

max 
x 1 ∈ [0 ,l e 1 ] , ... ,x p ∈ [0 ,l e p ] 

e 1 , ... ,e p ∈ E 

×
∑ 

a ∈ V 
ω a 

∑ p 
j=1 

αa / (d(a, x j )) 
2 

∑ p 
j=1 

αa / (d(a, x j )) 2 + 

∑ r 
j=1 αa j / (d(a, y j )) 2 

. (3) 

In order to simplify the previous expression, the following pos- 

itive constant is considered for each a ∈ V : 

βa = 

r ∑ 

j=1 

αa j /αa 

(d(a, y j )) 2 
. (4) 

Problem (3) can be rewritten then as the following MINLP: 

max 
x 1 ∈ [0 ,l e 1 ] , ... ,x p ∈ [0 ,l e p ] 

e 1 , ... ,e p ∈ E 

F (x 1 , . . . , x p ) (5) 

where F is defined as 

F (x 1 , . . . , x p ) = 

∑ 

a ∈ V 
ω a 

1 

1 + 

βa ∑ p 
j=1 

1 

(d(a,x j )) 
2 

. (6) 

The MINLP problem (5) is formed by a combinatorial and a con- 

tinuous part. First, we need to solve the combinatorial problem of 

choosing a set of p edges to locate the facilities, and then solve a 

continuous location problem on the edges. 

3. The methodology 

The natural way to solve the MINLP formulation of the p -facility 

Huff location problem is to use a branch-and-bound method. We 

differen tiate two main phases: the initialization phase and the 

branch-and-bound phase. In the initialization phase the initial ex- 

ploration tree is prepared. In the branch-and-bound phase, an el- 

ement of the list is selected iteratively (until the termination rule 

is fulfilled) according to a selection criterion, and then is divided 

into new elements that are included into the list if they cannot be 

eliminated by their bounds. In this phase, division, bounding, se- 

lection, elimination and termination rules are required. 

In this paper we propose different approaches for the initializa- 

tion phase, division and bounding rules. As selection, elimination 

and termination rules, we always apply the usual ones from the 

literature ( Berman et al., 2011 ): the element to be evaluated is se- 

lected as the one with the largest upper bound, elements whose 

upper bound are lower than the current lower bound are elim- 

inated, and the optimization is terminated when the relative er- 

ror between the largest upper bound and the current lower bound 

is less than a fixed tolerance. This section is aimed at describing 

two types of initialization and division rules. Bounding rules will 

be discussed in Section 4 . 

The methodology proposed in Blanquero et al. (2014) , where 

the single-facility problem is tackled, has in common with the 

methodology herein considered the use of a branch-and-bound al- 

gorithm with, essentially, the same upper bounds. However, the 

difficulty introduced by the combinatorial part of the problem 

leads us to use sophisticated data structures in the branch-and- 

bound recently introduced in Blanquero et al. (2015) , so that the 

election of the p edges can be done in an optimal way during the 

algorithm running. The initialization and the division phases of the 

algorithm are deeply affected by the use of these structures. 

3.1. Total enumeration 

The straightforward way of solving Problem (5) is to separate 

the combinatorial and the continuous part of the problem: we first 

fix a set of p edges to locate the facilities, and then solve a contin- 

uous location problem on the edges. This means the branch-and- 

bound approach starts with a partition of the search space formed 

by the cartesian product of p -uples. The p -uples are formed by ev- 

ery possible combination of p edges, taking into account that sev- 

eral facilities can be located at the same edge, i.e., repetitions of 

the same edge are allowed in the elements of the partition. But 

obviously, permutations of the p -uples are not taken into account. 

During the algorithm running, the edges forming the initial el- 

ements of the partition are going to be divided into small pieces 

(segments of edge), which will be referred to as subedges through- 

out the paper. 

We denote by s = (s 1 , . . . , s k ) an element of the partition, where 

each component s i is a (sub)edge that has a multiplicity m ( s i ), 

i.e., the number of facilities located at s i is m ( s i ). Hence, m (s 1 ) + 
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