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a b s t r a c t 

This paper considers periodic preventive maintenance policies for a deteriorating repairable system. On 

each failure the system is repaired and, at the planned times, it is periodically maintained to improve its 

reliability performance. Most of periodic preventive maintenance (PM) models for repairable systems have 

been studied assuming that the failure process between two PMs follows the nonhomogeneous Poisson 

process (NHPP), implying the minimal repair on each failure. However, in this paper, we assume that the 

failure process between two PMs follows a new counting process which is a generalized version of the 

NHPP. We develop two types of PM models and study detailed properties of the optimal policies which 

minimize the long-run expected cost rates. Numerical examples are also provided. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In the reliability area, various types of repairs have been de- 

veloped based on different point processes and they have been 

applied for modeling the corresponding maintenance effects. Af- 

ter the classical maintenance model proposed by Barlow and 

Hunter (1960) , mathematical sophistication of preventive mainte- 

nance models has increased. Comprehensive discussions on differ- 

ent maintenance models can be found in Canfield (1986), Naka- 

gawa (1986), Nguyen and Murthy (1981) and Liu et al. (1995) . More 

theoretical and sophisticated models have also been developed; 

see Aven and Jensen (20 0 0), Cheng and Chen (2003), Marais and 

Saleh (20 09), Mercier (20 02), Mercier and Pham (2012), Vaughan 

(2005), Wang and Zhang (2013) and Chenetal (2015) . See also 

Valdez-Flores and Feldman (1989), Wang (2002) and Tadj, Ouali, 

Yacout, and Ait-Kadi (2011) for surveys on various practical main- 

tenance models. Nakagawa (2005) provides an overview on more 

theoretical maintenance models. 

Maintenance actions can generally be divided into two types: 

corrective maintenance (CM) and preventive maintenance (PM). 

For a deteriorating repairable system, the CM action is conducted 

upon failure to recover the system from a failure, whereas the PM 

action is performed at the planned time to improve the system 

reliability performance. Most of the periodic PM models for re- 

pairable systems have been studied assuming that the failure pro- 

cess between two PMs follows the nonhomogeneous Poisson pro- 

cess (NHPP), which implies that the repair type of the CM per- 
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formed on each failure is the minimal repair (see, e.g., Cheng & 

Chen, 2003; Cheng, Zhao, Chen, & Sun, 2014; Nakagawa, 1986; 

Nguyen & Murthy, 1981; Park, Jung, & Yum, 20 0 0 ). By the ‘minimal 

repair’, we mean that the state of the system after the repair is re- 

stored to the as-bad-as-old condition, i.e., to the state it had prior 

to the failure. As the failure process in this case follows the NHPP, 

the assumption of minimal repair generally allows a closed-form 

of results (e.g. the long-run expected cost rates) and nice mathe- 

matical properties for the optimal solutions in maintenance opti- 

mization. 

However, practically, when a component in a system fails, this 

may lead to a more hostile working environment through in- 

creased pressure, temperature, humidity, and so on, causing in- 

stantaneous stress or damage to the adjacent non-failed compo- 

nents. It eventually results in the system degradation and, hence, 

an increase in the level of the system failure rate function (see El- 

Damcese, 1997; Hoyland & Rausand, 1994; and Jeong, 2012 ). For 

example, (a) the failure of a still wire cable in a bridge or in an 

elevator instantaneously increases the stress on the remaining ca- 

bles and leads to some damages before repairing the failed one; (b) 

for a multi-engine airplane, the failure of an engine during flight 

instantaneously causes increased stress on the non-failed engines 

until landing for the repair of the failed engine; (c) a failure of a 

pump in a multi pump hydraulic control system instantly increases 

the pressure for each non-failed pump until the repair of the failed 

one; (d) when an electric device fails by an external shock (electric 

or mechanical shock), the non-failed components also experience 

this external shock and their reliability performances can be worse 

than before. 
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Under the situations illustrated above, after the repair of the 

failed component, the reliability performances of the non-failed 

components are worse than before the failure. Accordingly, the 

overall state of the system after the repair of the failed component 

is worse than the state it had just prior to the failure. As illus- 

trated above, in practice, this type of ‘worse-than-minimal repair’ 

happens not because of a repair action (e.g., a faulty repair), but 

because of the negative effect caused by a failure in the system. 

Motivated by the above consideration, in this paper, we in- 

troduce a new repair type which is ‘worse-than-minimal repair’, 

based on the Generalized Polya Process (GPP). The GPP has been 

recently described based on the notion of stochastic intensity and 

its probabilistic properties have been studied in detail ( Cha, 2014 ). 

It will be seen that this new repair process includes the minimal 

repair process as a special case and, accordingly, it is a general- 

ized version of the minimal repair process. It will also be seen 

that the GPP relaxes the restrictive ‘independent increments prop- 

erty’ of the NHPP, which has an important practical meaning from 

maintenance modeling point of view (see Section 2 ). Then, assum- 

ing that the failure process between two PMs follows the GPP, we 

study and discuss a relevant maintenance optimization problem. 

The main objective of Cha (2014) was to study the probabilis- 

tic properties of the GPP. Then, it suggested a possible application 

of the GPP to a reliability problem by providing an example which 

applies the GPP to the simplest ‘replacement’ policy. On the other 

hand, in this current paper, we develop two types of PM models 

based on the new repair process, which combine CM, PM and re- 

placement. In the two PM models, the system is preventively main- 

tained (PM) at periodic times iT , i = 1 , 2 , . . . , N − 1 , and is replaced 

at NT (Replacement). The reliability improvement made by a PM 

is stochastically modeled based on the properties of the GPP. The 

failures of the system which occur between PMs are repaired by 

the new type of repair (CM). Thus, the corresponding PM policies 

are characterized by two PM parameters (N, T ) . For each model, 

we study detailed properties of the optimal PM policies ( N 

∗, T ∗) 
which minimize the long-run expected cost rates. Because the PM 

models in this paper are developed based on a new type of re- 

pair process instead of the conventional minimal repair process, 

the current work would suggest a new research direction in the 

study of PM. 

This paper is organized as follows. In Section 2 , we introduce 

a new type of generalized repair which is worse-than-minimal- 

repair based on the GPP. We also interpret the involved parameter 

in the new repair process from the PM modeling point of view. In 

Section 3 , we develop the two types of PM models. For each model, 

we derive the properties of the optimal policy and, based on them, 

we provide two-stage optimization procedure. In Section 4 , numer- 

ical examples are provided for illustrations. Finally in Section 5 , 

concluding remarks are given and further topics to be developed 

are suggested. 

2. A generalized repair process 

2.1. A new type of repair 

Although the minimal repair process based on the NHPP has 

been a very useful tool for modeling the failure process of a re- 

pairable system, its practical limitation also exists. For instance, the 

NHPP possesses the independent increment property. This implies 

that the future failure process in this case does not depend on the 

failure history of the system. For instance, suppose that we have 

two systems at time t: one has experienced no failure until time 

t , whereas the other one has experienced frequent failures and has 

been minimally repaired until time t . Under the minimal repair as- 

sumption, these two systems have no statistical difference at all, 

e.g., their future failure rates are the same. On the other hand, as 

will be seen in this section, the GPP does not possess the inde- 

pendent increment property and, under the GPP repair assumption, 

the future reliability performance of a system becomes worse and 

worse as the number of system failures occurred in the past in- 

creases. Thus, from this practical point of view, the GPP repair can 

be understood as a practically more plausible assumption in main- 

tenance modeling. Some recent works such as Babykina and Coual- 

lier (2014) and Le Gat (2014) have shown that the GPP is better 

fitted to some real field failure data sets than the traditional NHPP 

model. 

Note that one counting process corresponds to one repair type 

and vice versa. For instance, the ‘perfect repair’ corresponds to the 

renewal process and the ‘minimal repair’ corresponds to the NHPP. 

Thus, to define a new type of repair, we need a new counting 

process. We will now introduce the concept of stochastic intensity 

and, based on it, we provide the definition of the GPP. 

Let { N(t) , t ≥ 0 } be an orderly point process and H t− ≡
{ N(u ) , 0 ≤ u < t} be the history (internal filtration) of the process 

in [0 , t) , i.e., the set of all point events in [0 , t) . Observe that H t−
can equivalently be defined in terms of N(t−) and the sequen- 

tial arrival points of the events S 0 ≡ 0 ≤ S 1 ≤ S 2 ≤ ... ≤ S N(t−) < t in 

[0 , t) , where S i is the time from 0 until the arrival of the i th event 

in [0 , t) . The point processes can be mathematically described by 

using the concept of the stochastic intensity (the intensity process) 

λt , t ≥ 0 ( Aven & Jensen, 1999, 20 0 0 ). As discussed in Cha and 

Finkelstein (2011), Finkelstein and Cha (2013) and Cha (2014) , the 

stochastic intensity λt of an orderly point process { N(t) , t ≥ 0 } is 

defined as the following limit: 

λt = lim 

�t→ 0 

Pr [ N(t , t + �t ) = 1 | H t−] 

�t 
= lim 

�t→ 0 

E[ N(t , t + �t ) | H t−] 

�t 
, 

(1) 

where N( t 1 , t 2 ) , t 1 < t 2 , represents the number of events in [ t 1 , t 2 ) . 

The stochastic intensity defined in ( 1 ) has the following heuris- 

tic interpretation: λt d t = E[ d N(t) | H t−] , which is very similar to the 

ordinary failure rate or hazard rate of a random variable ( Aven 

& Jensen, 1999 ). In the case of the NHPP with intensity function 

λ(t) , the stochastic intensity is given by the ‘deterministic func- 

tion’ λt = λ(t) , t ≥ 0 . In Cha (2014) , the definition of the GPP is 

given as follows. 

Definition 1. Generalized Polya Process (GPP) 

A counting process { N(t) , t ≥ 0 } is called the Generalized Polya 

Process (GPP) with the set of parameters (λ(t) , α, β) , α ≥ 0 , β > 0 , 

if 

(i) N(0) = 0 ; 

(ii) λt = (αN(t−) + β) λ(t) . 

As mentioned in Cha (2014) , the GPP with (λ(t) , α = 0 , β = 1) 

reduces to the NHPP with the intensity function λ(t) and, accord- 

ingly, the GPP can be understood as a generalized version of the 

NHPP. For our further discussion, we give here the following sup- 

plementary results on the GPP. The proofs are given in Cha (2014) . 

Proposition 1. Suppose that a counting process { N(t) , t ≥ 0 } is the 

GPP with the set of parameters (λ(t) , α, β) , α ≥ 0 , β > 0 . Then 

P (N(t) = n ) = 

�(β/α + n ) 

�(β/α) n ! 
( 1 − exp { −α�(t) } ) n 

× ( exp { −α�(t) } ) βα , n = 0 , 1 , 2 , . . . , 

where �(t) ≡ ∫ t 
0 λ(s ) ds , and 

E[ N(t)] = 

β

α
( exp { α�(t) } − 1) . 

Thus, it can be seen that the distribution of N(t) follows a 

negative binomial distribution with the corresponding parame- 

ters ( exp { −α�(t) } , β/α) , where the probability mass function of 
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