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a b s t r a c t 

Several popular generalizations of expected utility theory—cumulative prospect theory, rank-dependent 

utility and Yaari’s dual model—allow for non-linear transformation of (de-)cumulative probabilities. This 

paper shows an unexpected connection between probability weighting and the statistical theory of 

L-moments. Specifically, cubic probability weighting results in a linear tradeoff between the expected 

value (the first L-moment), Gini (1912) mean difference statistic (the second L-moment, also known as 

L-scale) and the third L-moment (measuring skewness). Inverse S-shaped probability weighting function 

crossing the 45 ° line at a probability ≤0.5 reflects an aversion to the dispersion of outcomes and an 

attraction to positively skewed distributions. 

© 2016 Elsevier B.V. All rights reserved. 

1. Probability weighting and L-moments 

The Allais (1953) paradox highlighted descriptive limitations of 

expected utility theory—people may reveal a different preference 

ordering over two pairs of probability distributions that must be 

ranked consistently by any expected utility maximizer. In response 

to the Allais (1953) paradox, expected utility theory was gen- 

eralized to numerous non-expected utility theories (reviewed in 

Starmer, 20 0 0 ). Popular generalizations of expected utility theory 

that can rationalize several behavioral regularities in choice un- 

der risk/uncertainty are Tversky and Kahneman (1992) cumulative 

prospect theory, 1 Quiggin (1981) rank-dependent utility and Yaari 

(1987) dual model. These theories introduce a non-linear probabil- 

ity weighting function over (de-)cumulative probabilities in choice 

under risk (or non-additive capacities over events in choice under 

uncertainty/ambiguity). 
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1 For example, cumulative prospect theory can account for Allais (1953) common 

consequence effect, the common ratio effect ( e.g . Bernasconi, 1994 ), systematic vi- 

olations of the betweenness axiom ( e.g . Camerer and Ho, 1994 ) and the four-fold 

pattern of risk attitudes. Schmidt, Starmer, and Sugden (2008) present an exten- 

sion of the theory that can account for the preference reversal phenomenon as 

well as the discrepancy between willingness-to-accept and willingness-to-pay. Yet, 

there are also several behavioral regularities that cumulative prospect theory fails 

to rationalize such as Blavatskyy (2012b) troika paradox and Machina (2009) reflex- 

ion example (see also Blavatskyy, 2013 a). Curiously, typical parameterizations of the 

theory cannot resolve the classical St. Petersburg paradox ( Blavatskyy, 2005 ). 

This paper shows an unexpected connection between proba- 

bility weighting and the statistical theory of L-moments. Under 

Yaari (1987) dual model with a cubic probability weighting func- 

tion preferences are represented by a weighted sum of three sta- 

tistical measures: (1) the expected value of a lottery (which is also 

the first L-moment); (2) Gini (1912) mean difference statistic 2 (or 

the second L-moment, which is sometimes called L-scale); and (3) 

the third L-moment of a lottery (a measure of skewness). Thus, 

there is an unexpected connection to the financial literature. 

Markowitz (1952) assumed that investor’s preferences depend 

not only on the expected value (the mean) but also on the 

standard deviation (or the variance) of assets’ returns. Unfor- 

tunately, any investor with such preferences inevitably violates 

the first-order stochastic dominance ( cf . Borch 1969 ). Yitzhaki 

(1982) showed that violations of stochastic dominance can be 

avoided by using a different measure of statistical dispersion of as- 

sets’ returns—Gini (1912) mean difference statistic. 3 

The mean-Gini approach of Shalit and Yitzhaki (1984) can be 

further extended by introducing a preference for gambling. Already 

Markowitz (1952 , p. 90) considered the possibility that investors 

may care not only about the mean and the standard deviation (or 

the variance) but also—about the skewness of assets’ returns. Yet, 

Markowitz (1952 , p. 90) proposed to measure skewness with the 

third central moment, which may lead to the violations of the first- 

order stochastic dominance. Such violations may be avoided by 

2 Mathematical expectation of the absolute value of the difference between two 

realizations of a lottery. 
3 Blavatskyy (2010b) showed that violations of stochastic dominance can be also 

avoided by measuring financial risks with the mean absolute semideviation ( i.e . by 

aggregating only those deviations that are below the expected value). 
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using the third L-moment ( Hosking, 1990 ) instead of the third cen- 

tral moment. L-moments are more robust than conventional mo- 

ments to outliers, which turns out to be sufficient for ruling out 

violations of stochastic dominance. Note that the first L-moment is 

the expected value and the second L-moment is simply one half of 

Gini (1912) mean difference statistic. 

The literature on financial decision making uses the model of 

multi-attribute choice (with attributes being different moments of 

the distribution of assets’ returns). Arguably the simplest deci- 

sion criterion in multi-attribute choice is to aggregate different at- 

tributes into one real-valued index. Such a linear trade-off between 

the first three L-moments of a lottery represents preferences under 

Yaari (1987) dual model with a cubic probability weighting func- 

tion. 

A decision maker who prefers positively skewed distributions 

( e.g ., a small chance to win a highly desirable outcome) and dis- 

likes negatively skewed distributions ( e.g ., a small chance to end 

up with a highly undesirable outcome) generally has an inverse 

S-shaped probability weighting function. Moreover, this function 

crosses the 45 ° line at a probability smaller (greater) than 0.5 if a 

decision maker is also averse (attracted) to the dispersion of out- 

comes. Thus, a well-known probability weighting function empir- 

ically discovered by Tversky and Kahneman (1992 , p. 309) can be 

intuitively rationalized as a combination of two factors: an aver- 

sion to the second L-moment (dispersion) and an attraction to the 

third L-moment (skewness). A decision maker not caring about 

skewness has a simpler probability weighting function—a quadratic 

polynomial of (de-)cumulative probabilities—that can only be ei- 

ther concave or convex. This probability weighting function is dis- 

cussed in Delquié and Cillo (2006 , pp. 204–205). Yaari (1987) dual 

model with such a probability weighting function is a special case 

of the mean-Gini approach of Shalit and Yitzhaki (1984) . 

Economic decision theory deviated from the idea of risk neu- 

trality by introducing a non-linear (Bernoulli) utility function over 

money as well as a non-linear probability weighting function over 

(de-) cumulative probabilities. Financial decision theory deviated 

from the same idea by introducing a preference for the higher 

moments of a probability distribution. This paper shows that rep- 

resenting preferences with the first three L-moments is de facto 

equivalent to introducing a cubic probability weighting function. 

Thus, the two complimentary approaches to modeling decision 

making under risk from economics and finance can be unified into 

one general theory. 

The remainder of the paper is structured as follows. Cumula- 

tive prospect theory is briefly sum-marized in Section 2 . Read- 

ers familiar with the topic may skip Section 2 without the loss 

of continuity. A cubic probability weighting function is presented 

in Section 3 . Its relation to statistical L-moments ( Hosking, 1990 ) 

and mean-Gini approach ( Shalit & Yitzhaki, 1984 ) is discussed in 

Section 4 . Section 5 concludes with a general discussion. 

2. Cumulative prospect theory for choice under risk 

Let X ⊆ R denote a nonempty set of possible outcomes ( e.g . 

financial returns). A lottery L : X → [0,1] is a discrete probability dis- 

tribution on set X , i.e ., L ( x ) �[0,1] for all x � X and �x �X L ( x ) = 1. Any 

lottery can be alternatively characterized by its cumulative distri- 

bution function F L : X → [0,1]. This function gives the probability that 

lottery L yields an outcome at most as good as outcome x � X : 

F L ( x ) = 

∑ 

y ∈ X,x ≥y 

L ( y ) (1) 

A lottery can be also characterized by its decumulative distri- 

bution function G L : X → [0,1]. This function gives the probability that 

lottery L yields an outcome at least as good as outcome x � X : 

G L ( x ) = 1 − F L ( x ) + L (x ) (2) 

In cumulative prospect theory one outcome r � X is the refer- 

ence point of a decision maker. Outcomes greater than the refer- 

ence point are called gains. The set of all gains is denoted by X + 
⊆ X . Outcomes smaller than the reference point are called losses. 

The set of all losses is denoted by X − ⊆ X . 

Preferences of a decision maker are represented by the follow- 

ing utility function: 

U ( L ) = 

∑ 

x ∈ X −
[ w −( F L ( x ) ) − w −( 1 − G L ( x ) ) ] u ( x ) 

+ 

∑ 

x ∈ X + 
[ w + ( G L ( x ) ) − w + ( 1 − F L ( x ) ) ] u ( x ) (3) 

where w −[0,1]: → [0,1] and w + [0,1]: → [0,1] are two strictly increas- 

ing probability weighting functions such that w −(0) = w + (0) = 0 

and w −(1) = w + (1) = 1; and u : X → R is an increasing utility func- 

tion that is unique up to a multiplication by a positive constant 

and satisfying u ( r ) = 0. 4 

Quiggin (1981) rank-dependent utility is a special case of cu- 

mulative prospect theory when either w −( p ) = 1—w + (1—p ) for all 

p � [0,1] or all outcomes in X are greater then the reference point r 

(so that the set of losses X − is empty). Yaari (1987) dual model is a 

special case of rank-dependent utility when utility function is lin- 

ear: u ( x ) = x for all x � X . Expected utility theory is a special case 

of rank-dependent utility when a probability weighting function is 

linear: w + ( p ) = p for all p � [0,1]. 

3. A cubic probability weighting function 

In the following, a probability weighting function is written 

without subscripts “+ ” and “−“ whenever it is inconsequential 

whether we deal with gains or losses. We consider a probability 

weighting function that is a cubic polynomial of probability: 

w ( q ) = q − ρ · q ( 1 − q ) + τ · q ( 1 − q ) ( 1 − 2 q ) (4) 

for all q � [0,1] and two subjective parameters ρ , τ�R . Note that 

function ( 4 ) always satisfies w (0) = 0 and w (1) = 1. Table 1 sum- 

marizes the properties of function ( 4 ) for various values of param- 

eters ρ and τ . 

Fig. 1 plots function ( 4 ) for several positive values of parameter 

τ . Note that the probability weighting function is inverse S-shaped 

crossing the 45 ° line at a probability q less than one half when ρ
is positive but less then τ ( cf . dashed curves in Fig. 1 ). Yet, if ρ is 

greater than or equal to τ , the probability weighting function does 

not cross the 45 ° line at all ( cf . a solid curve in Fig. 1 ). When ρ
is negative but greater than −τ , the probability weighting function 

is inverse S-shaped crossing the 45 ° line at a probability q greater 

than one half ( cf . dotted and dashed-dotted curves in Fig. 1 ). Yet, 

if ρ is less than or equal to −τ , the probability weighting function 

does not cross the 45 ° line at all ( cf . a dashed-double-dotted curve 

in Fig. 1 ). Thus, probability weighting function ( 4 ) with a positive 

value of τ is quite flexible. It can take a variety of shapes includ- 

ing a convex function, a concave function and an inverse S-shaped 

function crossing the 45 ° line at various probabilities q . 

We can use an existing axiomatization of cumulative prospect 

theory (with a generic probability weighting function) and impose 

4 There are also additional convexity assumptions. Tversky and Kahneman (1992 , 

p. 305) assumed that both probability weighting functions are inverse S-shaped 

(concave near probability zero and convex near probability one). This paper relaxes 

this assumption. Additionally, prospect theory assumes that utility function is con- 

vex on X − and concave on X + . Finally, the assumption of loss aversion restricts util- 

ity function as well (see Köbberling and Wakker, 2005; Blavatskyy, 2011 b). 
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