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a b s t r a c t 

The starting point used by an interior point algorithm for linear and convex quadratic programming may 

significantly influence the behaviour of the method. A widely used heuristic to construct such a point 

consists of dropping variable nonnegativity constraints and computing a solution which minimizes the 

Euclidean norm of the primal (or dual) point while satisfying the appropriate primal (or dual) equal- 

ity constraints, followed by shifting the variables so that all their components are positive and bounded 

away from zero. In this Short Communication a new approach for finding a starting point is proposed. It 

relies on a few inexact Newton steps performed at the start of the solution process. A formal justification 

of the new heuristic is given and computational results are presented to demonstrate its advantages in 

practice. Computational experience with a large collection of small- and medium-size test problems re- 

veals that the new starting point is superior to the old one and saves 20–40% of iterations needed by the 

primal-dual method. For larger and more difficult problems this translates into remarkable savings in the 

solution time. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

We are concerned in this paper with the efficient solution of 

linear and convex quadratic programming problems using interior 

point methods (IPMs). Such problems are at the heart of many 

more complicated optimization techniques and progress in their 

solution impacts the whole optimization area. Following the nota- 

tion of Gondzio (2012a) we consider the following general primal- 

dual pair of convex quadratic programming (QP) problems 

Primal Dual 

min c T x + 

1 

2 

x T Qx max b T y − 1 

2 

x T Qx 

s.t. Ax = b, s.t. A 

T y + s − Qx = c, 

x ≥ 0 ; y free, s ≥ 0 , 

(1) 

where A ∈ R 

m ×n has full row rank m ≤ n , Q ∈ R 

n ×n is a positive 

semidefinite matrix, x, s, c ∈ R 

n and y, b ∈ R 

m . In the special case 

when Q = 0 the problems become the pair of primal-dual linear 

programming (LP) problems. 
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Standard interior point methods are very sensitive to the choice 

of a starting point. Many codes use an idea of Mehrotra (1992) and 

construct a point by solving an auxiliary quadratic programming 

problem: min c T x + 

1 
2 x 

T Qx + 

1 
2 x 

T x s.t. Ax = b. In this problem all 

equality constraints are satisfied, but the simple inequalities are 

ignored. The solution of such a problem may be obtained by an 

explicit formula at a cost comparable to a single interior point it- 

eration. Since the non-negativity constraint x ≥ 0 is dropped in it, 

the solution might contain negative components. Therefore to be- 

come an eligible starting point for an IPM, they need to be shifted 

to positive values. A similar auxiliary problem is formulated to de- 

termine an initial dual solution ( y , s ). Several attempts have been 

made to improve on this (heuristic) starting point selection and, 

although some of them offered attractive alternative initialization 

methods for particular classes of problems, to the best of the au- 

thor’s knowledge, they do not offer a competitive approach for the 

general case. It is worth mentioning that if a self-dual emdedding 

( Ye, Todd, & Mizuno, 1994 ) is used then it is possible to accommo- 

date an arbitrary point and convert it into a starting point ( Skajaa, 

Andersen, & Ye, 2013 ). However, the implementation of self-dual 

emdedding needs a slightly more involved linear algebra step (one 

more back-solve per iteration) and we are not going to use it here. 

In this paper we propose a new approach which finds a good 

initial point for interior point methods applied to a general con- 

vex quadratic programming problem. We call it a crash start tech- 

nique because it follows a similar principle to that employed by 
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simplex solvers and attempts to guess a starting point which is 

closer to optimality than a default one. Crash start has proved 

very useful in the context of simplex method for linear program- 

ming ( Bixby, 1992; Gould & Reid, 1989; Hall, 2010; Maros & Mitra, 

1998 ). Such procedures usually look for an advanced initial basis 

in which columns corresponding to slack and artificial variables are 

replaced by those corresponding to structural variables. The heuris- 

tics are based on a general expectation that the more those struc- 

tural columns are inserted into the initial basis the closer it might 

be to the optimal basis. 

The situation in interior point methods is significantly more 

complicated. Modern IPMs owe their efficiency to the ability to 

follow closely the central path ( Gondzio, 2012a; Wright, 1997 ). In- 

deed, both the theory and the computational practice confirm that, 

as long as the iterates remain in the proximity of the central path, 

fast progress to optimality can be made. Conversely, if the iterates 

leave the vicinity of the central path and prematurely approach the 

boundary of the feasible region, the algorithm might get stuck tak- 

ing small steps in the Newton direction and the convergence might 

be disappointingly slow. This means in particular that IPMs can- 

not be started successfully from an arbitrary point. An ideal initial 

point should satisfy several requirements: 

• it should be close to primal and dual feasibility; 
• it should be well centred; 
• it should be as close to optimality as possible. 

Finding such a point is by no means easy! 

In this paper we propose a practical method to construct a 

point which satisfies all three requirements. Recently there has 

been a major increase in interest in the use of iterative meth- 

ods to compute Newton directions in IPMs ( D’Apuzzo, De Simone, 

& Serafino, 2010; Gondzio, 2012a ) and a variety of precondition- 

ers for Krylov subspace methods applied in this context have 

been proposed. Many preconditioners have already been proposed 

for the normal equations (Schur complement of the KKT system) 

( Bocanegra, Campos, & Oliveira, 2007; Castro, 2000; Oliveira & 

Sorensen, 2005 ) as well as for the indefinite augmented form of 

the KKT system ( Durazzi & Ruggiero, 2003; Gill, Murray, Ponceleón, 

& Saunders, 1992; Lukšan & Vl ̌cek, 1998 ). There is increasing evi- 

dence that using inexact Newton directions ( Dembo, Eisenstat, & 

Steihaug, 1982 ) in interior point methods is well supported by the 

theory ( Bellavia, 1998; Gondzio, 2013 ) and works well in practice 

( Gondzio, 2012a ). Our crash start technique builds upon these de- 

velopments. 

We observe that at the beginning of the solution process an 

infeasible interior point method works with large infeasibilities 

in the primal and dual spaces and a large duality gap. There- 

fore computing highly accurate Newton directions is not neces- 

sary at this stage; very crude inexact directions are able to of- 

fer noticeable progress in reducing infeasibilities and the duality 

gap. Such inexact directions can be computed at a significantly 

lower cost than exact ones. Consequently we propose to run sev- 

eral initial iterations with directions computed by a preconditioned 

Krylov subspace method using a very simple (and inexpensive) 

preconditioner and asking only for very relaxed accuracy to make 

sure that a few Krylov iterations are enough to deliver an inex- 

act solution. Our choice is a partial Cholesky preconditioner which 

was designed specially for the matrix-free IPM ( Gondzio, 2012b ). 

This preconditioner has several advantages including simplicity 

and ability to work with very limited (and easy to control) memory 

requirements. 

In our developments in this Short Communication we will fol- 

low very closely the recent EJOR survey ( Gondzio, 2012a ) and 

therefore we will focus only on several computational aspects 

which are relevant to the understanding of our crash start ap- 

proach. Hence this short paper has the following simple structure. 

In Section 2 , we will present the key ideas of interior point meth- 

ods and in Section 3 we will discuss in detail our new crash start 

procedure and its implementation. Although our approach to gen- 

erate an advanced initial solution is only a heuristic, we will pro- 

vide some simple theoretical justification for it. In Section 4 , we 

will present a comparison of two variants of the interior point 

method, one using a standard default starting point and one initial- 

ized with the proposed crash start solution. Finally, in Section 5 we 

will give our conclusions. 

2. Basics of interior point methods 

Path-following interior point methods are well-understood 

( Gondzio, 2012a; Wright, 1997 ) and very powerful optimization 

techniques. An IPM for quadratic programming may be interpreted 

as an iterative method which follows the path of solutions of the 

following perturbed first order optimality conditions for (1) 

Ax = b, 

A 

T y + s − Qx = c, 

X Se = μe, 

(x, s ) ≥ 0 . (2) 

We use a standard IPM notation in which X and S are diagonal 

matrices in R 

n ×n with elements of vectors x and s spread across 

the diagonal, respectively and e ∈ R 

n is the vector of ones. 

IPMs use the notion of a primal-dual central path , being the set 

of solutions of (2) for any μ > 0. It can be shown that the set 

of such solutions forms a continuous path {( x ( μ), y ( μ), s ( μ)): μ
> 0} and much evidence has been gathered to date that interior 

point methods benefit from following this path closely ( Gonzaga, 

1992 ). In this paper we consider a primal-dual infeasible IPM and 

therefore define the symmetric primal-dual infeasible neighbourhood 

of the central path as follows 

N S (γ , β) = 

{
(x, y, s ) |‖ ξp ‖ ≤ βμ

μ0 
‖ ξ 0 

p ‖ , 

‖ ξd ‖ ≤ βμ

μ0 
‖ ξ 0 

d ‖ , γμ ≤ x j s j ≤
1 

γ
μ

}
, (3) 

where ξp = b − Ax and ξd = c − A 

T y − s + Qx are the violations of 

primal and dual feasibility constraints, respectively, the superscript 

zero denotes the initial values of the barrier parameter μ and the 

infeasibilities ξ p and ξ d , γ ∈ (0, 1) controls the width of the neigh- 

bourhood and β is a constant. From a computational perspective 

the most demanding task in IPMs is the computation of the New- 

ton direction ( �x , �y , �s ) for the nonlinear system (2) which re- 

quires solving the following system of linear equations 

⎡ 

⎣ 

A 0 0 

−Q A 

T I 

S 0 X 

⎤ 

⎦ ·

⎡ 

⎣ 

�x 

�y 

�s 

⎤ 

⎦ = 

⎡ 

⎣ 

ξp 

ξd 

ξμ

⎤ 

⎦ = 

⎡ 

⎣ 

b − Ax 

c − A 

T y − s + Qx 

σμe − X Se 

⎤ 

⎦ . (4) 

The parameter σ ∈ (0, 1) controls the aspiration of how much one 

would like to reduce the barrier term μk +1 = σμk . Given the New- 

ton direction, a maximum stepsize α which keeps the new iterate 

( ̄x , ̄y , ̄s ) = (x, y, s ) + α(�x, �y, �s ) in the neighbourhood (3) is de- 

termined and then the algorithm makes this step to a new iterate. 

We summarize the algorithm below. 
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