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a b s t r a c t

We present new valid inequalities for 0-1 programming problems that work in similar ways to well
known cover inequalities. Discussion and analysis of these cuts is followed by their revision and use in
integer programming as a new generation of cuts that excludes not only portions of polyhedra containing
noninteger points, also parts with some integer points that have been explored in search of an optimal
solution. Our computational experimentations demonstrate that this new approach has significant
potential for solving large scale integer programming problems.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Branch-and-cut was introduced in [2] demonstrating the
important role of the use of Gomory cutting planes [4] and cover
inequalities in the branch-and-bound process for solving integer
programming problems. Relatively recent works like [5,6] provide
extensive discussions of available strategic choices for using cover
inequalities in the branch-and-cut process for 0-1 programming.
One may see [7,10] for basic expositions of the subject and related
issues.

We work on the 0-1 integer programming problem given below
to introduce new valid inequalities similar to cover and lifted cover
inequalities. We have chosen this problem to introduce our ap-
proach, because most of the work on cover inequalities are based
on this problem. As a good example, we can mention [3] that de-
scribes an implementation of cover cuts on the multiple knapsack
version of the problem.

IP Maximize z ¼
Xn

j¼1

cjxj ð1Þ

subject to
Xn

j¼1

aijxj 6 bi for i ¼ 1; . . . ;m; ð2Þ

xj 2 f0;1g for j ¼ 1; . . . ; n; ð3Þ

m and n are the number of constraints and decision variables,
respectively.

We do not assume any restrictions the integrality or noninteg-
rality of the parameters cj; aij and bi.

The next section consists of the description and the generation
method of the inequalities together with the proof of validity. Sec-
tion 3 is devoted to redefining and improving the performance of
the proposed cuts. The preliminary numerical experiments are dis-
cussed in Section 4. Conclusions and comments follow in Section 5.

2. The new cut

Consider the problem IP and let XLP ¼ ðx1; . . . ; xnÞ denote a solu-
tion to the linear programming (LP) relaxation of this problem.
Also let Sp ¼ fjjxj > 0 in XLPg and solve the following problem:

z0 ¼max
Xn

j¼1

xj :
Xn

j¼1

aijxj 6 bi for i ¼ 1; . . . ;m and xj

2 ½0;1� for j ¼ 1; . . . ; n: ð4Þ

The following inequality is obviously valid:
X

j2Sp

xj 6 z0: ð5Þ

Also, this inequality is valid for all possible values xj in any solu-
tion of the LP relaxation for any objective function. Moreover, the
inequality is valid in the form,
X

j2Sp

xj 6 bz0c ð6Þ

for any integer solution of the problem for any objective function. In
fact, this last inequality may be an effective cut to make some non-
integer solutions infeasible. However, its use can be limited to very
few instances and it becomes ineffective very soon in a cutting
plane framework. It may even be useless if z0 is integer valued orP

j2Sp
xj 6 bz0c is not violated by the relaxed solution. Nonetheless,

it is the starting point of our proposal for a new type of cuts.
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Starting with the solution to the LP relaxation of the problem IP,
we partition N, the index set of variables of IP into two subsets:
S1 ¼ fjxj ¼ 1 in XLPg and S2 ¼ N n S1. Then, naming the LP relaxa-
tion of the original integer program IP as P, we define the following
linear program named as P1:

P1 z1 ¼maximize
X

j2S2

xj ð7Þ

subject to
Xn

j¼1

aijxj 6 bi for i ¼ 1; . . . ;m; ð8Þ
X

j2S1

xj ¼ jS1j; ð9Þ

0 6 xj 6 1 for j ¼ 1; . . . ;n: ð10Þ

Then the following is true.

Proposition 1. The inequality
X

j2S1

rxj þ
X

j2S2

xj 6 rjS1j þ bz1c ð11Þ

is valid for the solution set of the problem IP for r ¼ jS2j.

Proof. It is obvious that the above inequality is violated by the cur-
rent XLP if

P
j2S2

xj > bz1c . On the other hand, the inequality is valid
for all integer solutions satisfying the condition

P
j2S2

xj 6 bz1c.
However, when

P
j2S2

xj > bz1c holds for an integer solution, that
solution must have at least one xj with j 2 S1 equal to zero in order
that the solution is feasible, by the definition of z1 in P1. Thus we
conclude that the number of xj’s for j 2 S2 being equal to 1 can be
greater than bz1c, only if at least one variable xj in S1 is equal to 0.
Setting r ¼ jS2jwill allow the inequality to hold even when all vari-
ables in S2 are equal to 1, and only one variable in S1 is equal to
0. h

The valid inequality of Eq. (11) will be called the cardinality cut.
Assigning large values to the parameter r is not desirable since

the quality of the cut will be poor, i.e., the cut will remove a rela-
tively small part of the underlying polyhedron containing no inte-
ger solutions. A more reasonable approach is to choose r more
carefully. Consider a slight variation of P1 given below:

P2 z2 ¼maximize
X

j2S2

xj ð12Þ

subject to
Xn

j¼1

aijxj 6 bi for i ¼ 1; . . . ;m; ð13Þ
X

j2S1

xj ¼ jS1j � 1; ð14Þ

0 6 xj 6 1 for j ¼ 1; . . . ;n: ð15Þ

Assuming z2 > z1, without loss of generality, z2 � bz1c is an upper-
bound on how many more xj’s in S2 can take a value of 1 when
we decrease the cardinality of S1 by 1. Note that when we replace
the right hand side of the equation

P
j2S1

xj ¼ jS1j � 1 by jS1j � 2,
the difference z2 � bz1c will less than double, since z2 parametrized
by jS1j � k, is a concave piecewise linear function for k P 0. Thus,
setting r ¼ z2 � bz1c gives a relaxation sufficiently tight for the pur-
pose of cutting deeper into the underlying polyhedron.

There will, of course, be instances (z1 ¼ bz1c for example), such
that the valid inequality will fail to eliminate XLP . We can try a
few more things before giving up and starting branching. The
most obvious thing to do is to play around the partition of N into
S1 and S2. We have tried two strategies with partial success. First
one is to move few variables from S2 to S1 picking those with val-
ues close to 1. Second strategy is to eliminate some variables in S2

from consideration, i.e., not including them in the valid inequali-
ties, or in the objective function of problem P2. We may end up

with effective cuts as a result of these changes. Second strategy
and its variations seem to be working better in our preliminary
experimentations.

We report results comparing the efficiency of these new cuts
with that of the cover inequalities in a cutting plane framework
on a set of hard multidimensional knapsack problems described
in [8,9]. Note that, the new cuts may be used for the traveling
salesman problem, set packing or covering problems, and other
NP-Hard problems with 0-1 constraint matrices as well, without
any adaptation of the inequality given in Eq. (11). This is an extra
feature of the new cut over the capability of ordinary cover
inequalities.

Although the comparison mentioned above indicates superior
efficiency of the cardinality cuts over the cover inequalities, we
have discovered that their functionality and efficiency may be fur-
ther enhanced by slightly changing their definition and using them
in a novel algorithmic approach. This led to some significant
improvements for the solution of large scale 0-1 integer program-
ming problems. The next section reports these developments.

3. Redefinition, optimization and aggregation of the cardinality
cuts

The inequality given by Eq. (11) is a lifted version of the
inequality of Eq. (6). We take a further step in this direction and
obtain what might be called the overlifted version of Eq. (11), be-
cause lifting is done for the purpose of eliminating a certain set
of feasible integer solutions from the solution space.

Let us consider the following revised version of P1 defined by
Eqs. (7)–(10):

P3 z3 ¼maximize
X

j2S2

cjxj ð16Þ

subject to
Xn

j¼1

aijxj 6 bi for i ¼ 1; . . . ;m; ð17Þ
X

j2S1

xj ¼ jS1j; ð18Þ

xj 2 f0;1g for j ¼ 1; . . . ;n: ð19Þ

The optimal solution of this problem is a feasible solution for IP.
Also, ZINTLB ¼ z3 þ

P
j2S1

cj is a lower bound for the optmal objective
function value of IP. We call the following version of the cardinality
cut ‘‘the optimized cardinality cut”:
X

j2S1

rxj þ
X

j2S2

xj 6 rjS1j ð20Þ

with r ¼ jS2j.
Then, we state and prove the following proposition:

Proposition 2. The optimized cardinality cut represented by the
inequality in Eq. (20), when added to P, makes sure that all solutions
of P3, except for the solution X ¼ fjjxj ¼ 1 for j 2 S1 and
xj ¼ 0 for j 2 S2g, are infeasible while all other integer solutions of

IP remain feasible.

Proof. It is obvious that for any positive value of r, the inequality
will be violated when any variable xj for j 2 S2 takes a positive
value while all xj ¼ 1 for j 2 S1. On the other hand, setting only
one xj ¼ 0 such that j 2 S1 will make room for all xj’s such that
j 2 S2to take positive values if we set r ¼ jS2j. h

Corollary 1. When the inequality of Eq. (20) is added to the con-
straint set of P, the LP relaxation of IP, with r ¼ jS2j, it separates only
the integer and noninteger solutions having all xj ¼ 1 with j 2 S1 as a
proper subset of variables with nonzero values, from the feasible set of
P. All other integer feasible solutions remain in the feasible set.
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