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a b s t r a c t 

A new two-phase method for solving the multi-parametric linear complementarity problem (mpLCP) with 

sufficient matrices is presented. In the first phase an initial feasible solution to mpLCP which satisfies 

certain criteria is determined. In the second phase the set of feasible parameters is partitioned into poly- 

hedral regions such that the solution of the mpLCP, as a function of the parameters, is invariant over 

each region. The worst-case complexity of the presented algorithms matches that of current methods for 

nondegenerate problems and is lower than that of current methods for degenerate problems. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

We consider a parametric form of the Linear Complementarity 

Problem (LCP) in which the right hand side vector is dependent on 

a vector of parameters θ ∈ S θ ⊆ R 

k , where S θ is a bounded convex 

polytope defining the set of “attainable” values for θ . This problem, 

referred to as the multiparametric Linear Complementarity Prob- 

lem (mpLCP), is as follows: 

Given M ∈ R 

h ×h , q ∈ R 

h and � Q ∈ R 

h ×k ( k ≤ h ), for each θ ∈ 

S θ find vectors w (θ ) and z ( θ ) in R 

h that satisfy the following 

system: 

w − Mz = q + � Qθ
w 

� z = 0 

w, z ≥ 0 

(1) 

If such a solution exists for a given θ ∈ S θ , mpLCP is said to be 

feasible at θ , otherwise it is infeasible at θ . Similarly, mpLCP is said 

to be feasible if there exists a ˆ θ ∈ S θ at which mpLCP is feasible, 

otherwise mpLCP is infeasible . As finding a solution to (1) for each 

θ ∈ S θ individually is intractable, the goal of mpLCP is to partition 

the space S θ into regions such that the representation of the solu- 

tion vectors w and z as functions of θ is invariant over each region. 

In the literature these regions have been given a variety of names, 

such as invariancy regions, critical regions, and validity sets. We 

refer to them as invariancy regions and discuss them in more detail 

in the next section. 
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LCP, and by extension mpLCP, has numerous applications in the 

fields of engineering and economics. For an extensive list we sug- 

gest ( Cottle, Pang, & Stone, 2009; Murty & Yu, 1997 ). It is well 

known that Linear Programs (LPs) Quadratic Programs (QPs) with 

convex objective functions and linear constraints can be refor- 

mulated as LCPs. Thus, mpLCP encompasses multiparametric LPs 

(mpLPs) and multiparametric QPs (mpQPs) containing parameters 

in the linear term of the objective function and in the right hand 

sides of the constraints. Recently mpQPs of this form have re- 

ceived much attention in the literature for their application to 

model predictive control ( Baoti ́c, 2002; Bemporad, Morari, Dua, & 

Pistikopoulos, 20 0 0; Grancharova & Johansen, 2012; Gupta, Bhar- 

tiya, & Nataraj, 2011; Patrinos & Sarimveis, 2010; Pistikopoulos, 

Dua, Bozinis, Bemporad, & Morari, 2002; Spjøtvold, Kerrigan, Jones, 

Tøndel, & Johansen, 2006; Spjøtvold, Tøndel, & Johansen, 2007; 

Tøndel, Johansen, & Bemporad, 2003a; 2003b ). 

Another important class of problems that has received consid- 

erable attention in recent years and can also be formulated as a 

mpQP is multiobjective optimization problems with a single psue- 

doconvex objective and any number of linear objectives. These 

types of problems are particularly relevant in the areas of eco- 

nomics and finance. Examples of works considering these types 

of problems include Hirschberger, Qi, and Steuer (2010), Ponsich, 

Jaimes, & Coello (2013), Smimou (2014), Yu & Lee (2011), Zopouni- 

dis, Galariotis, Doumpos, Sarri, & Andriosopoulos (2015) and the 

references therein. 

In general LCP is NP-hard, though polynomial time algorithms 

exist for certain classes of the matrix M . Thus, much work has been 

done in order to identify various classes of matrices M which im- 

pact one’s ability to solve an instance of LCP. Solution techniques 
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for LCP are often designed for specific classes of M . For a concise 

list of important matrix classes see Cottle (2010) . For a detailed 

discussion on these classes and their impact on LCP see Cottle 

et al. (2009) ; Murty and Yu (1997) . We will refer to many of the 

matrix classes discussed in these works throughout this paper. As 

the method we proposed requires that M be a sufficient matrix, we 

provide the following definition, as found in Cottle et al. (2009) . 

Definition 1.1. A matrix M ∈ R 

h ×h is column sufficient if the follow- 

ing implication is satisfied: 

{ x i (Mx ) i ≤ 0 for all i } ⇒ { x i (Mx ) i = 0 for all i } (2) 

M is said to be row sufficient if M 

� is column sufficient. If M is both 

column and row sufficient, it is then called sufficient . 

Parametric LCP with a single parameter (i.e., k = 1 ) has been 

studied quite extensively. Some of the works considering this 

problem include Cottle (1972) , Danao (1997) , Pang (1980) and 

Pang, Kaneko, and Hallman, (1979) . Columbano, Fukuda, and Jones 

(2009) , Gailly, Installe, and Smeers (2001) , Jones and Morari 

(2006) and Li and Ierapetritou (2010) consider mpLCP as in (1) (i.e., 

k > 1). The method of Gailly et al. (2001) is designed for the case 

in which M is copositive-plus. The method is theoretically sound 

but lacks a practical discussion as to how the theory should be 

implemented. Jones and Morari (2006) propose a method for the 

case in which M is positive semi-definite. Their method is an ex- 

tension of techniques that are used for solving single paramet- 

ric LCP, but depends on a lexicographic ε-perturbation in order 

to handle degeneracy. Columbano et al. (2009) developed a tech- 

nique for instances in which M is a sufficient matrix. When cer- 

tain conditions are not satisfied, however, their method depends 

on an ε-perturbation technique in which an auxiliary multiobjec- 

tive program must be solved. The method of Li and Ierapetritou 

(2010) works for general M , but is computationally expensive since 

it requires reformulating the mpLCP as a multiparametric bilin- 

ear mixed integer program. Recently, Herceg, Jones, Kvasnica, and 

Morari (2015) proposed a technique designed for general M which 

extends the enumerative approach of Gupta et al. (2011) for solving 

mpQP to the context of mpLCP. 

Significant improvements can still be made on solution tech- 

niques for mpLCP. In this paper we propose a two-phase technique 

for solving instances of mpLCP in which M is sufficient. Phase 1 

is used for initialization and only terminates when: (i) an instance 

of mpLCP has been shown to be infeasible, or (ii) an initial fea- 

sible solution and the corresponding invariancy region have been 

discovered. In the latter case, Phase 2 is then used to partition 

S θ . Phase 2 is inspired by the work of Columbano et al. (2009) , 

but does not rely on an ε-perturbation technique and therefore 

has an improved worst-case complexity. We point out that in our 

consideration of Phase 1 we answer a very important question 

that no other work we are aware of has considered, the ques- 

tion of how one can determine an initial feasible solution for a 

(multi)parametric LCP problem. In all works we know of, it is sim- 

ply assumed that such a solution is available. 

As mentioned, the method for solving mpLCP which we present 

in this work is a two-phase method. We will show that the prob- 

lem solved in the first phase of this method is a special case of the 

problem solved during the second phase. For this reason we dis- 

cuss Phase 2 prior to Phase 1. Hence, the remainder of this work 

is organized as follows. Background information on LCP problems 

and their geometrical structure is contained in Section 2 . The the- 

ory and methodology for Phase 2 of the proposed method for solv- 

ing mpLCP are presented in Section 3 . In Section 4 we present the 

theory and methodology for Phase 1. We discuss the complexity 

of each algorithm and present numerical results for applying the 

proposed two-phase method to a collection of mpQP instances in 

Section 5 . In Section 6 we provide concluding remarks and a dis- 

cussion on proposed future work. In Appendix A we offer an illus- 

trative example, showing explicitly how the Phase 1 and 2 algo- 

rithms are used to solve an instance of mpLCP. Appendix B con- 

tains detailed results from our computational experiments as well 

as a couple of supporting images. 

2. Background on mpLCP 

This section is divided into two subsections. In the first we 

present preliminary notations and definitions and in the second we 

provide a discussion on the geometry of mpLCP and provide some 

preliminary results. 

2.1. Preliminaries 

We begin this subsection by introducing definitions and nota- 

tion necessary for the remainder of this work. Assume that we are 

given an mpLCP of the form (1) and define the matrix G := [ I − M] 

and the vector ν := 

[
w 

z 

]
, where G ∈ R 

h ×2 h and ν ∈ R 

2 h . We use the 

notation G i • to represent the i th row of G and G • j to represent 

the j th column of G . Also, given a set I ⊆ { 1 , . . . , h } we use G I •
to denote the matrix formed by the rows of G indexed by I . Sim- 

ilarly, given a set J ⊆ { 1 , . . . , 2 h } we use G •J to denote the ma- 

trix formed by the columns of G indexed by J . Furthermore, given 

I ⊆ { 1 , . . . , h } and J ⊆ { 1 , . . . , 2 h } , we use G IJ to represent the 

submatrix of G consisting of the elements of the rows indexed by 

I which are in the columns indexed by J , i.e., G IJ = ( G I •) •J . Let 

E denote the index set { 1 , . . . , 2 h } for (1) . 

Definition 2.1. A basis is a set B ⊂ E such that | B | = h and 

rank (G •B ) = h . The set N := E \ B is called the complement of B . 

Definition 2.2. The sets of variables νB := { νi : i ∈ B } and νN := 

{ νi : i ∈ N } are referred to as the sets of basic and nonbasic vari- 

ables, respectively. 

Definition 2.3. Given a basis B , for every θ ∈ S θ , νB (θ ) = 

G 

−1 
•B ( q + � Qθ ) , νN (θ ) = 0 is a solution to the linear system: Gν = 

q + � Qθ. For each θ ∈ S θ , the solution 

(
νB (θ ) , νN (θ ) 

)
is called a 

basic solution . 

Definition 2.4. A basis B is called complementary if | { i, i + h } ∩ B | = 

1 for each i ∈ { 1 , . . . , h } . 
We have now built the tools necessary for providing the defini- 

tion of an invariancy region . Consider a complementary basis B and 

suppose there exists θ ∈ S θ such that: (i) νB (θ ) = G 

−1 
•B ( q + � Qθ ) ≥

0 and, (ii) νN (θ ) = 0 . Then since ν= 
[

w 

z 

]
, for all θ ∈ S θ satisfying (i) 

and (ii) above, the basic solution 

(
νB (θ ) , νN (θ ) 

)
satisfies (1) and 

therefore defines solution vectors w (θ ) and z ( θ ) for mpLCP. Note 

that one set of solution vectors of this form may exist for each 

complementary basis. 

Definition 2.5. The invariancy region IR B of a complementary ba- 

sis B is the set: 

IR B := 

{
θ ∈ S θ ⊆ R 

k : G 

−1 
•B ( q + � Qθ ) ≥ 0 

}
(3) 

Hence, there may exist one invariancy region for each comple- 

mentary basis. 

Definition 2.6. A complementary basis B is called feasible to (1) if 

IR B � = ∅ . 
Every invariancy region is a convex polytope contained within 

S θ . For every feasible complementary basis B , the affine func- 

tion defined by νB (θ ) = G 

−1 
•B ( q + � Qθ ) , νN (θ ) = 0 is a solution to 

(1) for all θ ∈ IR B . Therefore in this work we propose a method 
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